Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T13:54:26.283Z Has data issue: false hasContentIssue false

Synthesis and Li+ ion Migration Studies of Li6PS5X (X = Cl, Br, I)

Published online by Cambridge University Press:  20 September 2011

R. Prasada Rao*
Affiliation:
Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
S. Adams
Affiliation:
Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
*
Get access

Abstract

Lithium ion conducting argyrodite-type Li6PS5X (X = Cl, Br, I) compounds were prepared using mechanical milling followed by annealing. XRD characterization reveals the formation and growth of Li6PS5X crystals in samples under varying annealing conditions. Temperature dependent XRD data showed the monotonic increase of lattice constant within the range of study. For Li6PS5Cl and Li6PS5Br an ionic conductivity of the order of 10-3 S/cm is reached at room temperature, which is close to the Li mobility in conventional liquid electrolytes and well suitable for all-solid-state safe electrochemical energy storage devices. Bond valence analysis of Li ion migration paths for the argyrodites showed the formation of low energy pathway cages around halide ion for Li6PS5Cl, around the sulfide ion for Li6PS5I. For higher activation energies these cages are interconnected to form a 3-D pathway network. In the case of Li6PS5Br cages around Cl and Br require about the same activation energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Beeken, R.B., Garbe, J.J., Gillis, J.M., Petersen, N.R., Podoll, B.W., Stoneman, M.R., J. Phy. Chem. Solids, 66, 882(2005).Google Scholar
2. Deiseroth, H.-J., Kong, S.-T., Eckert, H., Vannahme, J., Reiner, C., Zais, T., Schlosser, M., Angew. Chem., 120, 767(2008).Google Scholar
3. Larson, A.C., von Dreele, R. B., General Structure Analysis System (GSAS); Report LAUR 86748; Los Alamos National Laboratory: Los Alamos, NM,(2000).Google Scholar
4. Toby, B.J., J. Appl. Crystallogr. 34, 210(2001).Google Scholar
5. Adams, S.; J. Power Sources,159, 200(2000).Google Scholar
6. Adams, S., Acta Crystallogr. B, Struct. Sci.,57, 278(2001).Google Scholar
7. Adams, S. and Swenson, J., Solid State Ionics,175, 665(2004).Google Scholar
8. Adams, S., Solid State Ionics, 177, 1625(2006).Google Scholar
9. Adams, S. and Prasada Rao, R., Phys. Chem. Chem. Phys., 11, 3210 (2009).Google Scholar
10. Rao, R. P., Tho, T. D. and Adams, S., Solid State Ionics, 181, 1(2010).Google Scholar
11. Pecher, O., Kong, S.-T., Goebel, T., Nickel, V., Weichert, K., Reiner, C., Deiseroth, H.-J., Maier, J., Haarmann, F., Zahn, D., Chem. Eur. J., 16, 1920(2010).Google Scholar
12. Kong, S.-T., Deiseroth, H.-J., Maier, J., Nickel, V., Weichert, K., Reiner, C., Anorg, Z.. Allg. Chem., 636, 1920(2010).Google Scholar