Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:52:37.051Z Has data issue: false hasContentIssue false

Surface Modification of α-Fe2O3 Nanorod Array Photoanodes for Improved Light-Induced Water Splitting

Published online by Cambridge University Press:  07 July 2011

Shaohua Shen
Affiliation:
State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
Coleman X. Kronawitter
Affiliation:
Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720, USA
Jiangang Jiang
Affiliation:
State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
Liejin Guo
Affiliation:
State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
Samuel S. Mao
Affiliation:
Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720, USA
Get access

Abstract

α-Fe2O3 nanorod arrays were fabricated by a low-temperature aqueous chemical growth (ACG) technique and followed by an annealing process. For the surface doping of α-Fe2O3 nanorods, β-FeOOH nanorods obtained via ACG were coated with a thin layer of Cr3+ precursor solution by spin coating, and then underwent the annealing treatment in air. Conducting polymer polypyrrole (PPy) decorated α-Fe2O3 nanorods were prepared by electrodeposition method using malic acid contained pyrrole aqueous solution. Primary results showed that the photocurrents of α-Fe2O3 nanorod array photoanodes were greatly enhanced by surface doping of Cr3+, as well as PPy decoration. This might be due to the retarded charge recombination and promoted surface reaction rate of photogenerated holes with water. Further investigation on surface modification of α-Fe2O3 nanorod array photoanodes is currently conducted in our group.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Fujishima, A. and Honda, K., Nature 238, 37 (1972).10.1038/238037a0Google Scholar
[2] Alexander, B. D., Kulesza, P. J., Rutkowska, I., Solarska, R. and Augustynski, J., J. Mater. Chem. 18, 2298 (2008).10.1039/b718644dGoogle Scholar
[3] Chen, X., Shen, S., Guo, L. and Mao, S. S., Chem. Rev. 110, 6503 (2010).10.1021/cr1001645Google Scholar
[4] Ohmori, T., Takahashi, H., Mametsuka, H. and Suzuki, E., Phys. Chem. Chem. Phys. 2, 3519 (2000).10.1039/b003977mGoogle Scholar
[5] Cherepy, N. J., Liston, D. B., Lovejoy, J. A., Deng, H. and Zhang, J. Z., J. Phys. Chem. B 102, 770 (1998).10.1021/jp973149eGoogle Scholar
[6] Ingler, J. W. B., Baltrus, J. P. and Khan, S. U. M., J. Am. Chem. Soc. 126, 10238 (2004).10.1021/ja048461yGoogle Scholar
[7] Ingler, J. W. B. and Khan, S. U. M., Int. J. Hydrogen Energy 30, 821 (2005).10.1016/j.ijhydene.2004.06.014Google Scholar
[8] Ingler, J. W. B. and Khan, S. U. M., Thin Solid Films 461, 301 (2004).10.1016/j.tsf.2004.01.094Google Scholar
[9] Glasscock, J. A., Barnes, P. R. F., Plumb, I. C. and Savvides, N., J. Phys. Chem. C 111, 16477 (2007).10.1021/jp074556lGoogle Scholar
[10] Kumari, S., Singh, A. P., Deva, Sonal D., Shrivastav, R., Dass, S. and Satsangi, V. R., Int. J. Hydrogen Energy 35, 3985 (2010).10.1016/j.ijhydene.2010.01.101Google Scholar
[11] Hu, Y. S., Kleiman-Shwarsctein, A., Forman, A. J., Hazen, D., Park, J. N. and McFarland, E. W., Chem. Mater. 20, 3803 (2008).10.1021/cm800144qGoogle Scholar
[12] Kleiman-Shwarsctein, A., Hu, Y. S., Forman, A. J., Stucky, G. D. and McFarland, E. W., J. Phys. Chem. C 112, 15900 (2008).10.1021/jp803775jGoogle Scholar
[13] Sartoretti, C. J., Alexander, B. D., Solarska, R., Rutkowska, I. A. and Augustynski, J., J. Phys. Chem. B 109, 13685 (2005).10.1021/jp051546gGoogle Scholar
[14] Jang, J. S., Lee, J., Ye, H., Fan, F. R. F. and Bard, A. J., J. Phys. Chem. C 113, 6719 (2009).10.1021/jp8109429Google Scholar
[15] Cesar, I., Kay, A., Martinez, J. A. G. and Grätzel, M., J. Am. Chem. Soc. 128, 4582 (2006).10.1021/ja060292pGoogle Scholar
[16] Kay, A., Cesar, I. and Grätzel, M., J. Am. Chem. Soc. 128, 15714 (2006).10.1021/ja064380lGoogle Scholar
[17] Tilley, S. D., Cornuz, M., Sivula, K. and Grätzel, M., Angew. Chem. Int. Ed. 49, 6405 (2010).10.1002/anie.201003110Google Scholar
[18] Kleiman-Shwarsctein, A., Hu, Y. S., Stucky, G. D. and McFarland, E. W., Electrochem. Commun. 11, 1150 (2009).10.1016/j.elecom.2009.03.034Google Scholar
[19] Zhong, D. K., Sun, J., Inumaru, H. and Gamelin, D. R., J. Am. Chem. Soc. 131, 6086 (2009).10.1021/ja9016478Google Scholar
[20] Kay, A., Cesar, I. and Grätzel, M., J. Am. Chem. Soc. 128, 15714 (2006).10.1021/ja064380lGoogle Scholar
[21] Sivula, K., Zboril, R., Formal, F. L., Robert, R., Weidenkaff, A., Tucek, J., Frydrych, J. and Grätzel, M., J. Am. Chem. Soc. 132, 7436 (2010).10.1021/ja101564fGoogle Scholar
[22] Duret, A. and Grätzel, M., J. Phys. Chem. B 109, 17184 (2005).10.1021/jp044127cGoogle Scholar
[23] Vayssieres, L., Beermann, N., Lindquist, S. E. and Hagfeldt, A., Chem. Mater. 13, 233 (2001).10.1021/cm001202xGoogle Scholar
[24] Beermann, N., Vayssieres, L., Lindquist, S. E. and Hagfeldt, A., J. Electrochem. Soc. 147, 2456 (2000).10.1149/1.1393553Google Scholar
[25] Mao, A., Han, G. Y. and Park, J. H.. J. Mater. Chem. 20, 2247 (2010).10.1039/b921965jGoogle Scholar
[26] Zhang, Z., Hossain, M. F. and Takahashi, T., Appl. Catal. B: Environ. 95, 423 (2010).10.1016/j.apcatb.2010.01.022Google Scholar