Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T09:56:41.100Z Has data issue: false hasContentIssue false

Supersaturated Substitutional Solid Solution after Solid Phase Epitaxial Regrowth by Incoherent Light Scanning.

Published online by Cambridge University Press:  15 February 2011

L. Pedulli
Affiliation:
Istituto Lamel-C.N.R. Via dei Castagnoli 1, 40126 Bologna, Italy.
L. Correra
Affiliation:
Istituto Lamel-C.N.R. Via dei Castagnoli 1, 40126 Bologna, Italy.
Get access

Abstract

Supersaturated substitutional solid solutions of 2×101531P+ /cm2 implanted at 10 keV in (100) Silicon were obtained after solid phase epitaxial regrowth using a scanning beam of incoherent light. The main results are: a) the maximum P+ concentration exceeds of about 5 times the maximum solid solubility at the temperature reached by the sample; b) the carrier concentration profile shows a complete dopant activation without diffusion of the implanted ions; c) an improvement of minority carriers diffusion length in the bulk is often observed; d) the values of carrier mobilities are similar to those obtained after liquid phase regrowth by pulsed ruby laser; e) a very good recovery of the damage is obtained: Rutherford backscattering spectra show that the dechanneling fraction is very close to the value of virgin samples and Trasmission Electron Microscopy analysis shows that the residual damage consists of dislocation loops of about 30 Å diameter confined in a region at about 500 Å depth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES.

1 - Campisano, S.U., Rimini, E., Baeri, P. and Foti, G., Appl. Phys. Lett., 37, 170 (1980).CrossRefGoogle Scholar
2 - Cohen, R.L., Williams, J.S., Feldman, L.C. and West, K.W., Appl. Phys. Lett., 33, 751 (1978).CrossRefGoogle Scholar
3 - Bomke, H.A., Berkowitz, H.L., Harmatz, M., Kronenberg, S. and Lux, R., Appl. Phys. Lett., 33, 955 (1978)CrossRefGoogle Scholar
4 - Lue, J.T., Appl. Phys. Lett., 36, 73 (1980).CrossRefGoogle Scholar
5 - Correra, L. and Pedulli, L., Appl. Phys. Lett., 37, 55 (1980).CrossRefGoogle Scholar
6 - Nishiyama, K., Arai, M. and Watanabe, N., J. J. Appl. Phys., 19, L563 (1980).CrossRefGoogle Scholar
7 - Powell, R.A., Yep, T.O. and Fulks, R.T., Appl. Phys Lett., 39, 2 (1981).CrossRefGoogle Scholar
8 - Correra, L. and Pedulli, L., “Int. Workshop on Ion Implantation, Laser Treatment and Ion Beam Analysis of Materials” Bombay (India) February 1981, in press.Google Scholar
9 - Pedulli, L. and Correra, L., “Interaction of the Atomic Particles with Solids - VI Soy. Nat. Conf.” Minsk (URSS) September 1981, in press.Google Scholar
10 - Masetti, G., Nobili, D. and Solmi, S., “Semiconductor Silicon 1977”, Ed. by Huff, H.R. and Sirtl, E., Electrochem. Soc., vol. 77–2, pag. 648 (1977).Google Scholar
11 - Fair, R.B. and Tsai, J.C.C., J. Electrochem. Soc., vol. 124–7, pag 1107 (1977).CrossRefGoogle Scholar
12 - Caughey, D.M. and Thomas, R.E., Proc.IEEE, 55, 2192 (1967).CrossRefGoogle Scholar
13 - Masetti, G. and Solmi, S., Sol. St. and Electr. Dev., 3, 65 (1979).Google Scholar
14 - Finetti, M., Negrini, P., Solmi, S. and Nobili, D., J. Electrochem. Soc., vol. 128–6, pag. 1313 (1981).CrossRefGoogle Scholar
15 - Helmreich, D. and Sirtl, E., “Semiconductor Silicon 1977”, Ed. by Huff, H.R. and Sirtl, E., Electrochem. Soc., vol. 77–2, pag 626 (1977).Google Scholar
16 - Benton, J.L., Doherty, C.J., Ferris, S.D., Kimerling, L.C., Leamy, H.J. and Celler, G.K., “Laser and Electron Beam Processing of Materials”, Ed. by White, C.W. and Pearcy, P.S., Academic Press, New York, pag. 430 (1980).CrossRefGoogle Scholar