Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T05:31:20.816Z Has data issue: false hasContentIssue false

State of Water in Nafion 117 Proton Exchange Membranes Studied by Dielectric Relaxation Spectroscopy

Published online by Cambridge University Press:  26 February 2011

Georgios Polizos
Affiliation:
[email protected], Pennsylvania State University, Materials Scienc and Engineering, Steidle Building, University Park, PA, 16802, United States
Zijie Lu
Affiliation:
[email protected], Penn State University, Materials Sci & Eng, University Park, PA, 16802, United States
Digby D Macdonald
Affiliation:
[email protected], Penn State University, Materials Sci & Eng, University Park, PA, 16802, United States
Evangelos Manias
Affiliation:
[email protected], Penn State University, Materials Sci & Eng, University Park, PA, 16802, United States
Get access

Abstract

Dynamics of water in Nafion 117 membranes, in the acid form, at two hydration levels and several temperatures were investigated by means of dielectric relaxation spectroscopy in both, low (10−2 to 107 Hz, 25 to −80 °C) and microwave (0.045-26 GHz, 35 °C) frequency regions by employing different experimental setups. Three states of water were identified: a) strongly bound to the sulfonic groups (in agreement with other investigations) forming the first hydration layer; b) loosely bound, surrounding the first layer and c) free water, having similar dynamics as in the bulk state.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rikukawa, M. and Sanui, K., Prog. Polym. Sci. 25, 1463 (2000).Google Scholar
2. Robertson, M. A. F. and Yeager, H. L., Structure and Properties of Perfluorinated Ionomers, in: Ionomers, Synthesis, Structure, Properties and Applications, ed. Tant, M. R., Mauritz, K. A. and Wilkes, G. L. (Chapman & Hall, 1997) pp.290330.Google Scholar
3. Paddison, S. J., Annu. Rev. Mater. Res. 33, 289 (2003).Google Scholar
4. Luck, W. A. P., Structure of Water and Aqueous Systems, Synthetic Membrane Processes, ed. Belfort, G. (Academic Press, 1984) pp.2172.Google Scholar
5. Boakye, E. E. and Yeager, H. L., J. Membrane Sci. 69, 155 (1992).Google Scholar
6. Yoshida, H. and Miura, Y., J. Membr. Sci. 68, 1 (1992).Google Scholar
7. Chen, R. S., Jayakody, J. P., Greenbaum, S. G., Pak, Y. S., Xu, G., McLin, M. G. and Fontanella, J. J., J. Electrochem. Soc. 140, 889 (1993).Google Scholar
8. Cappadonia, M., Erning, J. W. and Stimming, U., Journal of Electroanalytical Chemistry 376, 189 (1994).Google Scholar
9. Tsonos, C., Apekis, L. and Pissis, P., J. Mater. Sci. 35, 5957 (2000).Google Scholar
10. Paddison, S. J., Reagor, D. W. and Zawodzinski, T. A. Jr., J. Electroanal. Chem. 459, 91 (1998).Google Scholar
11. van Gemert, M. J. C., Phillips Res. Repts. 28, 530 (1973).Google Scholar
12. Havriliak, S. and Negami, S., J. Polym. Sci., Polym. Symp. 14, 89 (1966).Google Scholar
13. Ryabov, Ya., Gutina, A., Arkhipov, V. and Feldman, Yu., J. Phys. Chem. B 105, 1845 (2001).Google Scholar
14. Deng, Z. D. and Mauritz, K. A., Macromolecules 25, 2369 (1992).Google Scholar
15. Kaatze, U., J. Chem. Eng. Data 34, 371 (1989).Google Scholar