Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T12:26:50.657Z Has data issue: false hasContentIssue false

Sips adsorption model for DNA sensing with AlGaN/GaN high electron mobility transistors

Published online by Cambridge University Press:  13 February 2015

Espinosa Nayeli
Affiliation:
Department of Microsystem Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany Fraunhofer Institute of Applied Solid State Physics, Tullastr. 72, 79108, Freiburg, Germany
Schwarz U. Stefan
Affiliation:
Department of Microsystem Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany Fraunhofer Institute of Applied Solid State Physics, Tullastr. 72, 79108, Freiburg, Germany
Cimalla Volker
Affiliation:
Fraunhofer Institute of Applied Solid State Physics, Tullastr. 72, 79108, Freiburg, Germany
Ambacher Oliver
Affiliation:
Department of Microsystem Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany Fraunhofer Institute of Applied Solid State Physics, Tullastr. 72, 79108, Freiburg, Germany
Get access

Abstract

This work presents an adsorption model based on the Sips isotherm for sensing different concentrations of DNA with open gate AlGaN/GaN high electron mobility field effect transistors (HEMTs). Probe-DNA was immobilized on the transistor gate before the application of target-DNA. Concentrations of 10-15 to 10-6 mol/L were tested. The sensor has a detection limit of 10-12 mol/L and saturates after the addition of 10-8 mol/L target-DNA.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Calladine, C. R., Drew, H. R., Understanding DNA: The Molecule and How It Works(Elsevier, Oxford, 2004), pp. 203–69CrossRefGoogle Scholar
Yousef, A. E., in: Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems, edited by Zourob, M., Elwary, S. and Turner, A., (Springer, New York, 2008), pp 3148.CrossRefGoogle Scholar
Schoning, M. J. and Poghossian, A., Analyst. 127, 1137–51 (2002)CrossRefGoogle Scholar
Pearton, S. J., Ren, F., Wang, Y. L., Chu, B. H., Chen, K. H., Chang, C. Y., et al., Prog Mater Sci 55, 159 (2010)CrossRefGoogle Scholar
Ambacher, O., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M., et.al, J. Appl. Phys. 85, 3222–33 (1999)CrossRefGoogle Scholar
Kang, B. S., Wang, H. T., Ren, F., Pearton, S. et al., Appl. Phys. Lett. 91, 112106 (2007)CrossRefGoogle Scholar
Kang, B. S., Wang, H. T., Ren, F., Pearton, S. et al., J. Appl. Phys. 104, 031101 (2008)CrossRefGoogle Scholar
Ganguly, A., Chen, C., Lai, Y, Kuo, Y. C., Hsu, C., Chen, K. and Chen, L., J. Mat. Chem 19, J. Mater. Chem, 928-933 (2009)CrossRefGoogle Scholar
Wang, Y., Huang, C. and Kang, Y., IET Nanobiotechol. 8, 1017 (2014)CrossRefGoogle Scholar
Peterson, A. W., Wolf, L. K. and Georgiadis, R. M., J. Am. Chem. Soc. 124, 14601–7 (2002)CrossRefGoogle Scholar
Duan, X., Li, Y., Rajan, N. K., Routenberg, D. A., Modis, Y. and Reed, M. A., Nat. Nano. 7, 401407 (2012)CrossRefGoogle Scholar
Schwarz, S. U., Linkohr, S., Lorenz, P., Krischok, S., Nakamura, T., Cimalla, V., et al., Phys. Status. Solidi A 208, 16261629 (2011)CrossRefGoogle Scholar