No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
We have simulated metallo-dielectric photonic crystals that are sharp thermal emitters at infrared wavelengths, and are being employed in gas sensors. The simulations were performed with a rigorous scattering matrix approach where Maxwell's equations are solved in Fourier space. These metallo-dielectric photonic crystals consist of a sub-wavelength hole array in a metal layer coupled to a two-dimensional photonic crystal of the same periodicity. The sub-wavelength hole array has an enhanced transmission mode that couples to a guided mode of the photonic crystal. The transmissive mode of the hole array is absorbed by the photonic crystal to create a sharp absorption and reflective minimum feature found for a range of lattice spacing. The structure thermally emits in a narrow band of wavelengths controlled by the lattice spacing that can be tuned over the infrared region. The underlying physics of this emissive device is modeled with rigorous scattering matrix simulations.