Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T03:56:06.154Z Has data issue: false hasContentIssue false

Selective Grafting of Amine Groups on Polyethylene by Means of Modulated RF NH3 Plasmas

Published online by Cambridge University Press:  10 February 2011

M. Creatore
Affiliation:
Department of Chemistry. University of Bari - Centro Studio Chimica dei Plasmi, CNR 4, via Orabona, 70123. Bari, ITALY
G. Cicala
Affiliation:
Department of Chemistry. University of Bari - Centro Studio Chimica dei Plasmi, CNR 4, via Orabona, 70123. Bari, ITALY
P. Favia
Affiliation:
Department of Chemistry. University of Bari - Centro Studio Chimica dei Plasmi, CNR 4, via Orabona, 70123. Bari, ITALY
R. Lamendola
Affiliation:
Department of Chemistry. University of Bari - Centro Studio Chimica dei Plasmi, CNR 4, via Orabona, 70123. Bari, ITALY
R. d'Agostno*
Affiliation:
Department of Chemistry. University of Bari - Centro Studio Chimica dei Plasmi, CNR 4, via Orabona, 70123. Bari, ITALY
*
*contact author, e-mail: [email protected]
Get access

Abstract

Plasma treatments in power modulated NH3 RF glow discharges have been performed for modifying the surface of polyethylene (PE). Time Resolved Optical Emission Spectroscopy (TR-OES) has been utilized for monitoring the emission of active species during the modulation period of the discharge, Electron Spectroscopy for Chemical Analysis (ESCA) has been used for studying the surface composition of PE before and after the derivatization of plasmagrafted -NH2 groups. We present our preliminary results here, which show how modulated NH3 plasmas can effectively improve the grafting selectivity of -NH2 respect to all other N-containing groups.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Favia, P., Stendardo, M.V. and d’Agostino, R., Plasmas and Polymers 1, 91, (1996).Google Scholar
2. Favia, P., Palumbo, F., Stendardo, M.V. and d’Agostino, R., in Sur.face A.Ioclificalion of Polymeric Biornmalrials, edited by Ratner, B.D. and Castner, D.G. (Plenum Press, New York, 1996) pp. 6977.Google Scholar
3. Panchalingam, V., Chen, X., Savage, C.R., Timmons, R. and Eberhart, R.C., J. Appl. Polym. Sci.: Appl. Polym. Symp. 54, 123, (1994).Google Scholar
4. Bruno, G., Capezzuto, P., Losurdo, M. and Cicala, G., J. non Cryst. Solids 137138, 753, (1991).Google Scholar
5. Samukawa, S. and Terada, K., J. Vac. Sci. Technol. B 12(6), 3300, (1994).Google Scholar
6. Samukawa, S. and Mieno, T., Plasma Sour. Sci. Technol. 5, 132, (1996).Google Scholar
7. Cicala, G., Losurdo, M., Capezzuto, P. and Bruno, G., Plasma Sour. Sci. Technol. 1, 156, (1992).Google Scholar
8. Ashida, S., Lee, C. and Liebermann, M.A., J. Vac. Sci. Technol. A 13(5), 2498, (1995).Google Scholar
9. Biehl, H. and Stuhl, F., Chem. Phys. Lett., 240, 369, (1995).Google Scholar
10. d’Agostino, R., Cramarossa, F., De Benedictis, S. and Ferraro, G., Plasma Chem. Plasma Proc. 1(1), 19,(1981).Google Scholar
11. Coburn, J. W. and Chen, M., J. Appl. Phys., 51(6), 3134, (1980).Google Scholar
12. d’Agostino, R., Cramarossa, F., De Benedictis, S. and Ferraro, G., J. Appl. Phys. 52(3),1259, (1980).Google Scholar
13. Kampas, F. J. and Griffith, R. W., J. Appl. Phys. 52(3), 1284 (1980).Google Scholar