Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T02:34:31.776Z Has data issue: false hasContentIssue false

Roughness, impurities and strain in low-temperature epitaxial silicon films grown by tantalum filament hot-wire chemical vapor deposition

Published online by Cambridge University Press:  01 February 2011

Charles W. Teplin
Affiliation:
[email protected], NREL, NCPV, 1617 Cole Blvd, Golden, CO, 80401, United States, 303-384-6440, 303-384-6430
Matthew Page
Affiliation:
[email protected], National Renewable Energy Lab, Golden, CO, 80401, United States
Eugene Iwaniczko
Affiliation:
[email protected], National Renewable Energy Lab, Golden, CO, 80401, United States
Kim M. Jones
Affiliation:
[email protected], National Renewable Energy Lab, Golden, CO, 80401, United States
Robert M. Ready
Affiliation:
[email protected], National Renewable Energy Lab, Golden, CO, 80401, United States
Bobby M. To
Affiliation:
[email protected], National Renewable Energy Lab, Golden, CO, 80401, United States
Helio M. Moutinho
Affiliation:
[email protected], National Renewable Energy Lab, Golden, CO, 80401, United States
Qi M. Wang
Affiliation:
[email protected], National Renewable Energy Lab, Golden, CO, 80401, United States
Howard M. Branz
Affiliation:
[email protected], National Renewable Energy Lab, Golden, CO, 80401, United States
Get access

Abstract

We grow epitaxial silicon films onto (100) silicon wafers from pure silane by hot-wire chemical vapor deposition (HWCVD). The films grow epitaxially for a thickness hepi before a Si:H cones nucleate and expand. We study the dependence of hepi on growth rate and the differences between Ta and W filaments. The surface morphology of thin but completely epitaxial films are studied in order to correlate the surface roughness during growth with the eventual epitaxial breakdown thickness. Surface roughness, strain and H at the wafer/film interface are not likely to cause the observed breakdown.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bergmann, R.B. and Werner, J.H., Thin Solid Films 403, 162 (2002).Google Scholar
[2] Findikoglu, A., Choi, W., Matias, V., Holesinger, T., Jia, Q. and Peterson, D., Adv. Mat. 17, 1527 (2005).Google Scholar
[3] Fuhs, W., Gall, S., Rau, B., Schmidt, M. and Schneider, J., Solar Energy 77, 961 (2004).Google Scholar
[4] Richardson, C.E., Kayes, B.M., Dicken, M.J. and Atwater, H.A., Amorphous and Nanocrystalline Silicon Science and Technology-2005. Symposium (Materials Research Society Symposium Proceedings Vol.862) 171 (2005).Google Scholar
[5] Eaglesham, D.J., J. Appl. Phys. 77, 3597 (1995).Google Scholar
[6] Eaglesham, D.J., Gossmann, H.J. and Cerullo, M., Phys. Rev. Lett. 65, 1227 (1990).Google Scholar
[7] Murty, M.V.R. and Atwater, H.A., Phys. Rev. B 49, 8483 (1994).Google Scholar
[8] Weir, B., Freer, B., Headrick, R., Eaglesham, D., Gilmer, G., Bevk, J. and Feldman, L., Appl. Phys. Lett. 59, 204 (1991).Google Scholar
[9] Nerding, M., Oberbeck, L., T.Wagner, A., Bergmann, R.B. and Strunk, H.P., J. Appl. Phys. 93, 2570 (2003).Google Scholar
[10] Straub, A., Harder, N.P., Huang, Y.D. and Aberle, A.G., J. Cryst. Growth 268, 41 (2004).Google Scholar
[11] Rau, B., Sieber, I., Selle, B., Brehme, S., Knipper, U., Gall, S. and Fuhs, W., Thin Solid Films 451–52, 644 (2004).Google Scholar
[12] Seitz, H. and Schroder, B., Solid State Commun. 116, 625 (2000).Google Scholar
[13] Teplin, C.W., Wang, Q., Iwaniczko, E., Jones, K.M., Al-Jassim, M., Reedy, R.C. and Branz, H.M., J. Cryst. Growth 287, 414 (2006).Google Scholar
[14] Thiesen, J., Iwaniczko, E., Jones, K.M., Mahan, A. and Crandall, R., Appl. Phys. Lett. 75, 992 (1999).Google Scholar
[15] Mason, M.S., Chen, C.M. and Atwater, H.A., Thin Solid Films 430, 54 (2003).Google Scholar
[16] Richardson, C., Mason, M. and Atwater, H., Thin Solid Films 501, 332 (2006).Google Scholar
[17] Teplin, C.W., Levi, D.H., Iwaniczko, E., Jones, K.M., Perkins, J.D. and Branz, H.M., J. Appl. Phys. 97, (2005).Google Scholar
[18] Teplin, C.W., Levi, D.H., Wang, Q., Iwaniczko, E., Jones, K.M. and Branz, H.M., Amorphous and Nanocrystalline Silicon Science and Technology-2004 (Materials Research Symposium Proceedings Vol.808) 209 (2004).Google Scholar
[19] Teplin, C.W., Iwaniczko, E., Jones, K.M., Reedy, R., To, B. and Branz, H.M., Amorphous and Nanocrystalline Silicon Science and Technology-2005. Symposium (Materials Research Society Symposium Proceedings Vol.862) 177 (2005).Google Scholar
[20] Karpenko, O.P., Yalisove, S.M. and Eaglesham, D.J., J. Appl. Phys. 82, 1157 (1997).Google Scholar
[21] Platen, J., Selle, B., Sieber, I., Brehme, S., Zeimer, U. and Fuhs, W., Thin Solid Films 381, 22 (2001).Google Scholar
[22] Schulze, G. and Henzler, M., Surf. Sci. 124, 336 (1983).Google Scholar
[23] Thiesen, J., Branz, H.M. and Crandall, R.S., Appl. Phys. Lett. 77, 3589 (2000).Google Scholar
[24] Copel, M. and Tromp, R.M., Phys. Rev. Lett. 72, 1236 (1994).Google Scholar
[25] Ji, J. and Shen, T., Phys. Rev. B 70, 115309 (2004).Google Scholar