Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-02T23:20:36.012Z Has data issue: false hasContentIssue false

The Role of Low-Energy Ion/Surface Interactions During Crystal Growth from the Vapor Phase: Effects on Microchemistry and Microstructure

Published online by Cambridge University Press:  21 February 2011

J. E. Greene
Affiliation:
Department of Materials Science, the Coordinated Science Laboratory, and the Materials Research Laboratory, University of Illinois, 1101 Springfield Ave. Urbana, Illinois 61801, USA.
J.-E. Sundgren
Affiliation:
Dept. of Physics, Linköping University, S-581 83, Linköping, Sweden.
Get access

Extract

Low-energy (≤ 200 eV) ion irradiation during crystal growth from the vapor phase can be used to provide new chemical reaction pathways, modify film-growth kinetics, and, hence, controllably alter the physical properties of films deposited by a variety of techniques. The latter includes sputter deposition, ion plating, plasma-assisted chemical vapor deposition (PA-CVD), primary-ion deposition (PID), and molecular-beam epitaxy (MBE) using accelerated beam sources. Ion/surface interaction effects such as ion-induced chemistry, trapping, recoil implantation, preferential sputtering, collisional mixing, enhanced diffusion, and alteration in segregation behavior are used to interpret and model experimental results concerning the effects of low-energy particle bombardment on nucleation and growth kinetics, elemental incorporation probabilities, compositional depth distributions, and the growth of metastable phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Greene, J.E., Motooka, T., Sundgren, J.-E., Lubben, D., Gorbatkin, S., and Barnett, S.A., J. Iucl. Instr. Methods B27, 226 (1987).Google Scholar
2. Greene, J.E., Barnett, S.A., Sundgren, J.-E., and Rockett, A., “Low-Energy Ion/Surface Interactions During Film Growth from the Vapor Phase”, ed. by Itoh, T., (Elsevier, Amsterdam, 1988), Chapter 5.Google Scholar
3. Greene, J.E., Barnett, S.A., Sundgren, J.-E., and Rockett, A., “Low-Energy Ion/Surface Interactions During Film Growth from the Vapor Phase: Effects on Nucleation and Growth Kinetics, Defect Structure, and Elemental Incorporation Probabilities”, ed. by Auciello, O., Gras-Marti, A., and Flamm, D.L., Plasma Surface Interactions and Processing of Materials, NATO ASI Series (Kluwer Academic Publ., Dordrecht, Netherlands), in press.Google Scholar
4. Greene, J.E., “Nucleation, Growth, and Microstructural Evolution in Films Grown by Physical Vapor Deposition,” in Deposition Technologies for Films and Coatings, 2nd Edition, ad. by Bunshaw, R.F. (Noyes Publ., Park Ridge, NJ), in press.Google Scholar
5. Sundgren, J.-E., Knall, J., Ni, W.-X., Hasan, M.-A., Markert, L.C., and Greene, J.E., Thin Solid Films, in press.Google Scholar
6. Greene, J.E., J. Vac. Sci. Technol. A5, 1947 (1987).Google Scholar
7. Donahue, T.J. and Reif, R., Semiconductor International, August, 142, (1985).Google Scholar
8. Lane, G.E. and Anderson, J.C., Thin Solid Films 26, 5 (1975).Google Scholar
9. Lane, G.E. and Anderson, J.C., Thin Solid Films,57, 277 (1979).Google Scholar
10. Barnett, S.A., Winters, H.F., and Greene, J.E., Surf. Sci. 181, 596 (1987).Google Scholar
11. Hasan, M. -A., Barnett, S.A., Sundgren, J.-E., and Greene, J.E., J. Vac. Sci. Technol. A5, 1883 (1987).Google Scholar
12. Dodson, B.W., J. Vac. Sci. Technol. B5, 1393 (1987).Google Scholar
13. Narusawa, T., Shimizu, S., and Komiya, S., J. Vac. Sci. Technol. 16, 366 (1979).Google Scholar
14. Thomas, G.E., Backers, L.J., Vrakking, J.J., and de Koning, B.R., J. Cryst. Growth 56, 257 (1982).Google Scholar
15. Zalm, P.C. and Backers, L.J., Appl. Phys. Lett. 41, 167 (1982).Google Scholar
16. Herbots, N., Noggle, T.S., Appleton, B.R., and Zhur, R.A., J. Vac. Sci. Technol., in press.Google Scholar
17. Yagi, K., Tamura, S., and Tokuyama, T., Japn. J. Appl. Phys. 16, 245 (1977).Google Scholar
18. Tokuyama, T., Yagi, K., Miyaki, K., Tamura, M., Natsuaki, N., and Tachi, S., Nucl. Instr. Meth. 182/183, 241 (1981).Google Scholar
19. Müller, K.-H., Phys. Rev. 35, 7906 (1987).Google Scholar
20. Kitabatake, M., Fons, P., and Greene, J.E., MRS Proceedings, Symposíum A, “Beam-Solid Interactions,” Boston, 1989.Google Scholar
21. Müller, K.-H., Surf. Sci. Lett. 184, L375 (1987).Google Scholar
22. Tsao, J.Y., Chason, E., Horn, K.M., Brice, D.K., and Picraux, S.T., Nucl.Instr. Meth., in press.Google Scholar
23. Hultman, L., Helmersson, U., Barnett, S.A., Sundgren, J.-E. and Greene, J.E., J. Appl. Phys. 61, 552 (1987).Google Scholar
24. Hultman, L., Barnett, S.A., Sundgren, J.-E., and Greene, J.E., J. Crystal Growth 92, 639 (1988).Google Scholar
25. Noël, J.-P, Greene, J.E., Rowell, N.L., Kechang, S., and Houghton, D.C., Appl. Phys. Lett. 55, 1525 (1989).Google Scholar
26. Mattox, D.M. and Kominiak, G.J., J. Vac. Sci. Technol. 9, 528 (1972).Google Scholar
27. Hakanssan, G., Sundgren, J.-E., McIntyre, D., Greene, J.E. and Miinz, W.-D., Thin Solid Films 153, 55 (1987).Google Scholar
28. Martin, P.J., Netterfield, R.P., and Sainty, W.G., J. AppI. Phys. 55, 235 (1984).Google Scholar
29. Netterfield, R.P., Sainty, W.G., Martin, P.J., and Sie, S.H., Appl. Opt. 24, 2267 (1985).Google Scholar
30. Müller, K.-H., Appl. Phys. A 40, 209 (1986).Google Scholar
31. Huang, T.C., Lim, G., Parmiagiani, F., and Kay, E., J. Vac. Sci. Technol. A 3, 2161 (1985).Google Scholar
32. Johansson, B.O., Sundgren, J.-E. and Helmersson, U., J. Appl. Phys. 58, 3112 (1985).Google Scholar
33. Kay, E., Parmigiani, F. and Parrish, W., J. Vac. Sci. Technol. A 5, 44 (1987).Google Scholar
34. Hasan, M., Knall, J., Barnett, S.A., Sundgren, J.-E., Markert, L.C., Rockett, A., and Greene, J.E. J. Appi. Phys. 65, 172 (1989).Google Scholar
35. Ni, W.-X, Knall, J., Hasan, M.A., Hansson, G.V., Sundgren, J.-E., Barnett, S.A., Markert, L.C., and Greene, J.E., Phys. Rev. B40, 10449 (1989).Google Scholar
36. Greene, J.E. and Barnett, S.A., J. Vac. Sci. Technol. 21, 285 (1982).Google Scholar
37. Carter, G., Armour, D.G., Donnelly, S.E., Ingram, D.C., and Webb, R.P., Rad. Eff. 53, 143 (1980).Google Scholar
38. Winters, H.F. and Kay, E., J. Appl. Phys. 38, 3928 (1967).Google Scholar
39. Hoffman, D.W. and Thornton, J.A., J. Vac. Sci. Technol. 20, 355 (1982).Google Scholar
40. Pan, A. and Greene, J.E., Thin Solid Films 153, 78 (1981).Google Scholar
41. Gras-Marti, A., Valles-Abarca, J.A. and Bensaoula, A., J. Vac. Sci. Technol. A5, 2217 (1987).Google Scholar
42. Vossen, J.l. and Cuomo, J.J., in Thin Film Processes, ed. by Vossen, J.L. and Kern, W. (Academic Press, New York, 1978), Chap. II-1.Google Scholar
43. Thornton, J.A. and Hoffman, D.W., J. Vac. Sci. Technol. 18, 203 (1981).Google Scholar
44. Eckstein, W. and Biersack, J.P., Z, Phys. B63, 471 (1986).Google Scholar
45. See for example, Gesang, W.R., Oechsner, H. and Snoof, H., Nucl. Instr. Methods 132, 687 (1976).Google Scholar
46. Cuomo, J.J. and Gambino, R.J., J. Vac. Sci. Technol. 14, 152 (1979).Google Scholar
47. Hultman, L., Markert, L.C., Sungren, J.-E. and Greene, J.E., Appl. Phys. Lett. 53, 1175 (1988).Google Scholar
48. Winters, H.F., Ramondi, D.L. and Horne, D.E. J. Appl. Phys. 40, 2996 (1989).Google Scholar
49. Cuomo, J.J. and Gambino, R.J., J. Vac. Sci. Technol. 12, 79 (1975).Google Scholar
50. Tarng, M.L. and Wehner, G.K., J. Appl. Phys. 42, 2449 (1971).Google Scholar
51. Zilko, J.L. and Greene, J.E., J. Appl. Phys. 51, 1549 (1980).Google Scholar
52. See, for example, Harper, J.M.E. and Gambino, R.J., J. Vac. Sci. Technol. 16, 1901 (1979).Google Scholar
53. Eltoukhy, A.H., Barnett, S.A. and Greene, J.E., J. Vac. Sci. Technol. 16, 321 (1979).Google Scholar
54. Zilko, J.L., Barnett, S.A., Eltoukhy, A.H., and Greene, J.E., J. Vac. Sci. Technol. 17, 595 (1980).Google Scholar
55. Brett, M.J. and Parsons, R.R., Can. J. Phys. 63, 819 (1985).Google Scholar
56. Shimizu, S., Tsukakoshi, T., Komiya, S., and Makita, Y., “GaAs and Related Compounds” in Inst. Phys. Conf. Series 79, 91 (1985), ed. by Fujimoto, M..Google Scholar
57. Maruno, S., Morishita, Y., Isu, T., Nomura, Y., and Ogata, H., J. Electronic Mater 17, 21 (1988).Google Scholar
58. Harper, J.M.E., Cuomo, J.J., and Hentzell, H.T.G., J. Appl. Phys. 58, 550 (1985).Google Scholar
59. Sundgren, J.-E., Johansson, B.O., Rockett, A., Barnett, S.A. and Greene, J.E., “Chemistry and Physics of Hard Coatings” in American Inst. Phys. Series Conf. Proc. 149, 95 (1986), ed. by Sproul, W., Greene, J.E., and Thornton, J.A..Google Scholar
60. Greene, J.E., Barnett, S.A., Bajor, G., and Rockett, A., Appl. Surf. Sci. 22/23, 520 (1985).Google Scholar
61. Ota, Y., J. Appl. Phys. 51, 1102 (1980).Google Scholar
62. Bajor, G. and Greene, J.E., J. Appl. Phys. 54, 1579 (1983).Google Scholar
63. Jorke, H., Herzog, H.-J., Kibbel, H., Appl. Phys. Lett. 47, 511 (1985).Google Scholar
64. Jorke, H. and Kibbel, H., J. Electrochem. Soc. 133, 744 (1986).Google Scholar
65. Noel, J.-P., Hirashita, N., Markert, L.C., Kim, Y.-W., Greene, J.E., Knall, J., Ni, W.-X., Hasan, M., and Sundgren, J.-E., J. Appl. Phys. 65, 1189 (1989).Google Scholar
66. Fons, P., Hirashita, N., Markert, L.C., Kim, Y.-W. and Greene, J.E., Appl. Phys. Lett. 53, 1732 (1988).Google Scholar