Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-09T22:48:11.778Z Has data issue: false hasContentIssue false

Raman Scattering Study for Self-Organized Ge Quantum Dots Formed on Si Substrate

Published online by Cambridge University Press:  11 February 2011

T. R. Yang
Affiliation:
Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan, ROC.
M. M. Dvoynenko
Affiliation:
Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan, ROC.
Z. C. Feng
Affiliation:
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332–0250, USA.
I. Ferguson
Affiliation:
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332–0250, USA.
H. H. Cheng
Affiliation:
Center for Condensed Matter Science, National Taiwan University, Taipei 106, Taiwan, ROC.
Get access

Abstract

A Raman scattering study for self-organized Ge dots on Si substrate is presented. Raman signals from the Ge islands and Si substrate have been separated, by means of difference Raman spectroscopy technique. The wetting layer thickness and strain were estimated from the line width and the position of the peak. The estimated wetting layer thickness values are comparative with the Ge dot height obtained from microscopy measurements. As explained, the strain is observed to decrease with an increase of the Ge island height and the wetting layer thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bimberg, D., Grundmann, M., Ledentsov, N.N., Quantum Dot Heterostructures (Wiley, Chichester, United Kingdom, 1998).Google Scholar
2. Arakawa, Y. and Sakaki, H., Appl. Phys. Lett. 40, 939 (1982).Google Scholar
3. Arakawa, Y., Phys. Stat. Sol. (a) 188, 37 (2001).Google Scholar
4. Chen, Z., Lu, D., Yuan, H., Han, P., Liu, X., Li, Y., Wang, X., Lu, Y. and Wang, Z., J. Crystal Growth 235, 188 (2002).Google Scholar
5. Chua, S. J., Xu, S. J., Zhang, X. H., Wang, X. C., Mei, T., Fan, W. J., Wang, C. H., Jiang, J. and Xie, X. G., Appl. Pjys. Lett. 73, 1997 (1998).Google Scholar
6. Kolobov, A.V., Morita, K., Itoh, K. M. and Haller, E. E., Appl. Phys. Lett. 81, 3855 (2002).Google Scholar
7. Das, A.K., Kamila, J., Dev, B.N., Sundaravel, B., Kuri, G., Appl. Phys. Lett. 77, 951 (2000); 78, 3552 (2001).Google Scholar
8. Liu, J. L., Tang, Y. S., Wang, K. L., Appl. Phys. Lett. 75, 3574 (1999);Google Scholar
Liu, J. L., Wan, J., Jiang, Z. M., Khitun, A., Wang, K. L. and Yu, D. P., Appl. Phys. Lett. 92, 6804 (2002).Google Scholar
9. Guedj, C., Beyer, A., Muller, E. and Grutzmacher, D., Appl. Phys. Lett. 78, 1742 (2001).Google Scholar
10. Jiang, Z.M., Pei, C.W., Zhou, X.F., Jiang, W.R., Shi, B., Liu, X.H., Wang, Xung, Jia, Q.J., Zheng, W.L., Jiang, X.M., Appl. Phys. Lett. 75, 370 (1999).Google Scholar
11. Talochkin, A.B., Markov, V.A., Nikiforov, A.I., Tits, S.A., JETP Lett. 70, 288 (1999).Google Scholar
12. Kolobov, A.V., Tanaka, K., Appl. Phys. Lett. 75, 3572 (1999) and 78, 3550 (2001);Google Scholar
Kolobov, A.V., J. Appl. Phys. 87, 2926 (2000).Google Scholar
13. Feng, Z.C., Kwak, B.S., Erbil, A. and Boatner, L.A., Appl. Phys. Lett. 62, 349 (1993).Google Scholar
14. Rücker, H., Methfessel, M., Dietrich, B., Pressel, K. and Osten, H.J., Phys. Rev. B53, 1302 (1996).Google Scholar
15. Peng, C.S., Huang, Q., Cheng, W.Q., Zhou, J.M., Zhang, Y.H., Sheng, T.T. and Tung, C.H., Appl. Phys. Lett. 72, 2541 (1998).Google Scholar
16. Temple, P.A., Hathaway, C.E., Phys. Rev. B 7, 3685 (1973).Google Scholar
17. Zhang, J.M., Giehler, M., Gobel, A., Ruf, T., Cardona, M., Phys. Rev B 57, 1348 (1998).Google Scholar
18. Semiconductors: Group IV Elements and III-V Compounds / Ed. by Madelung, O., Springer-Verlag, Berlin, 1991, p. 164.Google Scholar
19. Baribeau, J.-M., Lockwood, D.J., Jackman, T.E., Aebi, P., Tyliszczak, T., Hitchcock, P., Can. J. Phys. 69, 246 (1991).Google Scholar
20. Cerdeira, F., Buchenauer, C. J., Pollak, F.H., Cardona, M., Phys. Rev. B 5, 580 (1972).Google Scholar
21. Dumelow, T., Parker, T.J., Smith, S.R.P., Tilley, D.R., Surf. Sci. Rep. 17, 151 (1993).Google Scholar
22. Kolobov, A.V., Oyanagi, H., Brunner, K., Schittenhelm, P., Abstreiter, G., Tanaka, K., Appl. Phys. Lett. 78, 451 (2001).Google Scholar
23. Kottmann, J.P., Martin, O.J., Smith, D.R., Schultz, S., New J. Physics 2, 27.1 (2000).Google Scholar