Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T21:31:59.914Z Has data issue: false hasContentIssue false

Radiation Damage in Materials – Effects of Disorder

Published online by Cambridge University Press:  15 February 2011

Karl R. Whittle
Affiliation:
Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, PMB1, Menai, NSW 2234, Australia
Mark G. Blackford
Affiliation:
Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, PMB1, Menai, NSW 2234, Australia
Gregory R. Lumpkin
Affiliation:
Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, PMB1, Menai, NSW 2234, Australia
Katherine L. Smith
Affiliation:
Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, PMB1, Menai, NSW 2234, Australia
Nestor J. Zaluze
Affiliation:
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
Get access

Abstract

Radiation damage and the effect on physical and chemical properties is an important component in the prediction of the long-term stability of waste form materials. As part of the ongoing goal of increasing the accuracy of long-term predictions of radiation damage, two types of material, based on proposed materials with a waste form application have been irradiated. Results have shown that Y2TiO5 (Y2.67Ti1.33O6.67), and Yb2TiO5 (Yb2.67Ti1.33O6.67), both of which are non-stoichiometric, disordered pyrochlore-based compounds, behave significantly different to the stoichiometric, ordered pyrochlore equivalent. For example the critical temperature, the temperature above which materials remain crystalline during irradiation, is found to decrease from the ordered equivalents, e.g. Y2Ti2O7. A second material based on La2TiO5 has been found to behave differently to both La2/3TiO3 and La2Ti2O7, with a change in Tc of ∼ 200 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Weber, W. J., Ewing, R. C., Catlow, C. R. A., Rubia, T. D. de la, Hobbs, L. W., Kinoshita, C., Matzke, H., Motta, A. T., Nastasi, M., Salje, E. K. H., Vance, E. R. and Zinkle, S. J., Journal of Materials Research, 13, 14341484 (1998)Google Scholar
2 Lumpkin, G. R., Smith, K. L., Blackford, M. G., Thomas, B. S., Whittle, K. R., Marks, N. A. and Zaluzec, N. J., Physical Review B, 77, 212401 (2008)Google Scholar
3 Lumpkin, G. R., Pruneda, J. M., Rios, S., Smith, K. L., Trachenko, K., Whittle, K. R. and Zaluzec, N. J., Journal Of Solid State Chemistry, 180, 15121518 (2007)Google Scholar
4 Ewing, R. C., Weber, W. J. and Lian, J., Journal of Applied Physics, 95, 59495972 (2004)Google Scholar
5 Allen, C. W., Funk, L. L. and Ryan, E. A. in Ion-Solid Interactions for Materials Modification and Processing edited by Poker, D. B., Ila, D., Cheng, Y. T., Harriott, L. R. and Sigmon, T. W. (Mater. Res. Soc. Symp. Proc. 396) 641646 Google Scholar
6 Wang, S. X., Wang, L. M. and Ewing, R. C., Mat. Res. Soc. Proc., 504, 165 (1998)Google Scholar
7 Weber, W. J., Nuclear Instruments & Methods in Physics Research Section B- Beam Interactions with Materials and Atoms, 166-167, 98106 (2000)Google Scholar
8 Ashbrook, S. E., Whittle, K. R., Lumpkin, G. R. and Farnan, I., Journal Of Physical Chemistry B, 110, 1035810364 (2006)Google Scholar
9 Harvey, E. J., Whittle, K. R., Lumpkin, G. R., Smith, R. I. and Redfern, S. A. T., Journal Of Solid State Chemistry, 178, 800810 (2005)Google Scholar
10 Howard, C. J., Lumpkin, G. R., Smith, R. I. and Zhang, Z., J. Solid State Chem., 177, 27332739 (2004)Google Scholar