Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T09:53:22.705Z Has data issue: false hasContentIssue false

Properties of Surface States on GaN and Related Compounds and Their Passivation by Dielectric Films

Published online by Cambridge University Press:  11 February 2011

Hideki Hasegawa
Affiliation:
Research Center for Integrated Quantum Electronics (RCIQE) andGraduate School of Electronics and Information Engineering, Hokkaido University, N-13, W-8, Kita-ku, Sapporo, 060–8628, Japan
Tamotsu Hashizume
Affiliation:
Research Center for Integrated Quantum Electronics (RCIQE) andGraduate School of Electronics and Information Engineering, Hokkaido University, N-13, W-8, Kita-ku, Sapporo, 060–8628, Japan
Get access

Abstract

This paper reviews the authors′ recent efforts to clarify the properties of electronic states near surfaces of GaN and AlGaN by using various in-situ and ex-situ characterization techniques, including UHV contact-less C-V, photoluminescence surface state spectroscopy (PLS3), cathode luminescence in-depth spectroscopy (CLIS),and gateless FET techniques that have been developed by the authors’ group.

As a result, a model including a U-shaped surface state continuum, having a particular charge neutrality level, combined with frequent appearance of near-surface N-vacancy related deep donor states having a discrete level at Ec - 0.37eV is proposed as a unified model that can explain large gate leakage currents and current collapse in AlGaN/GaN HFETs. Hydrogen plasma treatment and SiO2 deposition increase N-vacancy related deep donors. Reasonably good surface passivation can be achieved by ECR-plasma SiNx films and by ECR-plasma oxidized Al2 O3 films both combined with ECR N2 plasma treatment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Manfra, M.J. et al., Appl. Phys. Lett, 77, 2888(2000).Google Scholar
[2] Oyama, S., Hashizume, T. and Hasegawa, H.,, Appl. Sur. Sci. 190, 322(2002).Google Scholar
[3] Vetury, R., Zhang, N.Q., Keller, S. and Mishra, U.K., IEEE Trans. Electron. Dev. 48, 560(2001).Google Scholar
[4] Binari, S. C. et al., IEEE Trans. Ele. Dev. 48, 465(2001).Google Scholar
[5] Konishi, M., Anantathanasarn, S., Hashizume, T. and Hasegawa, H., Inst. Phys. Conf. Ser., 170, 837(2002).Google Scholar
[6] Tarsa, E.J., Heying, B., Wu, X.H., Fini, P., DenBaars, S.P. and Speck, J.S., J. Appl. Phys., 82, 5472(1997).Google Scholar
[7] Chao, L.C. and Steckl, A.J., Appl. Phys. Lett., 743, 2364(1999).Google Scholar
[8] Hasegawa, H. et al., Mat. Sci. Eng. B 80, 147(2001).Google Scholar
[9] Akazawa, M. and Hasegawa, H., presented at 2002 EXMATEC, Budapest, May 26–29, 2002, to appear in Mat. Sci. Eng. B.Google Scholar
[10] Saitoh, T., Iwadate, H. and Hasegawa, H., Jpn. J. Appl. Phys., 30, 3750(1991).Google Scholar
[11] Sawada, T., Numata, K., Tohdoh, S., Saitoh, T. and Hasegawa, H., Jpn. J. Appl. Phys., 32, 511(1993).Google Scholar
[12] Hasegawa, H. and Ohno, H., J. Vac. Sci. Technol. B 4, 1130(1986).Google Scholar
[13] Kampen, T.U. and Mönch, W., Appl. Sur. Sci., 117/118, 388(1977).Google Scholar
[14] Ishikawa, F. and Hasegawa, H., Inst. Phys. Conf. Ser. 170, 461(2002).Google Scholar
[15] Ishikawa, F. and Hasegawa, H., Appl. Surf. Sci. 190, 508(2002).Google Scholar
[16] Adamowicz, B. and Hasegawa, H., J. J. Appl. Phys. 37, 1631(1998).Google Scholar
[17] Everhart, T. E. and Hoff, P. H., J. Appl. Phys. 42, 5837(1971).Google Scholar
[18] Leamy, H. J., J. Appl. Phys. 53, 51(1982).Google Scholar
[19] Ishikawa, F. and Hasegawa, H., presented at ICSFS-11, Marseille, July 8–12, 2002, to appear in Appl. Surf. Sci.Google Scholar
[20] Hasegawa, H. et al, J. Vac. Sci. Technol. B 5, 1097 (1987).Google Scholar
[21] Waldrop, J.R. and Grant, R.W., Appl. Phys. Lett. 68, 2879(1996).Google Scholar
[22] Wu, C.I. and Kahn, A., J. Vac. Sci. Technol. B 16, 2218(1998).Google Scholar
[23] Ambacher, O. et al, J. Vac. Sci. Technol. B, 14, 3532(1996).Google Scholar
[24] Hughes, G.H. et al, J. Vac. Sci. Technol. B, 16, 2237(1998).Google Scholar
[25] Tansley, T.L. and Egan, R.J., Phys. Rev. B 45, 10942(1992).Google Scholar
[26] Neugebauer, J. and Van de Walle, C.G., Phys. Rev. B 50, 8067(1994).Google Scholar
[27] Boguslauski, P., Briggs, E.L. and Bernholc, J., Phys. Rev. B 51, 17255(1995).Google Scholar
[28] Inagaki, T., Hashizume, T. and Hasegawa, H., presented at ISCSI-4, Karuizawa, October 21–24, 2002, to appear in Appl. Sur. Sci.Google Scholar
[29] Zhu, X. Y., Wolf, M. and White, J. M., J. Vac. Sci. Technol. A 11, 838(1993).Google Scholar
[30] Yamaguchi, E., and Junnarkar, M. R., J. Crystal Growth 189/190, 570(1998).Google Scholar
[31] Hasegawa, H. and Oyama, S., J. Vac. Sci. Technol. B 20, 1467(2002)Google Scholar
[32] Padovani, F. A. and Stratton, R., Solid State Electron. 9, 695(1966).Google Scholar
[33] Hasegawa, H. et al., presented at 2002 ISCS, Lausanne, October 7–10, 2002, to appear in Inst. Phys. Conf. Ser.Google Scholar
[34] Ambacher, O. et al, J. Appl. Phys., 85, 3222(1999).Google Scholar
[35] Hashizume, T. et al, Appl. Phys. Lett., 76, 2880(2000).Google Scholar
[36] Hashizume, T., Nakasaki, R., Ootomo, S., Oyama, S., and Hasegawa, H., Mat. Sci. Eng. B 80, 201(2001).Google Scholar
[37] Jin, Z., Hashizume, T. and Hasegawa, H., Appl. Sur. Sci. 190, 361(2002).Google Scholar
[38] Nakasaki, R., Hashizume, T. and Hasegawa, H., Physica E 7, 953(2000).Google Scholar
[39] Hashizume, T., Ootomo, S., Oyama, S., Konishi, M. and Hasegawa, H., J. Vac. Sci. Technol. B 19, 1675 (2001).Google Scholar
[40] Sato, T., Oyama, and Hasegawa, , presented at ICPS-26, Edinburgh, UK, July 29- August 2, 2002.Google Scholar
[41] Ootomo, S., Hashizume, T. and Hasegawa, H., presented at IWN-2002, Aachen, July 22–25, 2002, to appear in phys. stat. soldi (b).Google Scholar