Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T05:35:09.913Z Has data issue: false hasContentIssue false

Properties of MgB2 Fabricated by Sintering Mg and B Sandwich Structures

Published online by Cambridge University Press:  01 February 2011

Andrew Yeung
Affiliation:
[email protected], The Chinese University of Hong Kong, Physics, Room 107, Science Centre North Block,, The Chinese University of Hong Kong,, Shatin, NT, Hong Kong, N/A, Hong Kong
Dickon H. L. Ng
Affiliation:
[email protected], The Chinese University of Hong Kong, Department of Physics, Room 107, Science Centre North Block,, The Chinese University of Hong Kong,, Shatin, NT, Hong Kong, N/A, China, People's Republic of
Get access

Abstract

Magnesium diboride (MgB2) was successfully produced in a pellet with sandwich-like structure. The sample was prepared by embedding a layer of Mg powder in between layers of boron powder before they were cold-pressed and sintered in argon atmosphere at different temperatures. After sintering, the interfacial regions between the Mg and B layers were examined and hexagonal platelets were observed lying along the interfacial regions in samples sintered at temperatures above 700°C. These hexagonal platelets were confirmed as MgB2. When samples were sintered at higher temperatures, the lateral size of the platelets increased. At 700°C, the average size of the platelets was 0.5 μgm, and it increased to 1.5 μgm in sample sintered at 900°C. In addition, the critical temperature (TC) and the magnetization (M) were also changed from 35.4 K to 37.1 K and −0.7 to −1.8 emu/g, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nagamatsu, J. Nakagawa, N. Muranaka, T. Zenitani, Y. Akimitsu, J. Nature 63, 410 (2001).Google Scholar
2 Brinkman, A. Veldhuis, D. Mijatovic, D. Rijnders, G. Blank, D. H. A. Hilgenkamp, H. Rogalla, H., Appl. Phys. Lett. 79, 2420 (2001).Google Scholar
3 Canfield, P. C. Finnemore, D. K. Budko, S. L. Ostenson, J. E. Lapertot, G. Cunningham, C. E., Petrovic, C. Phys. Rev. Lett. 86, 2423 (2001).Google Scholar
4 Larbalestier, D. C. Cooley, L. D. Rikel, M. O. Polyanskii, A. A. Jiang, J. Patnaik, S. Cai, X. Y., Feldmann, D. M. Gurevich, A. Squitieri, A. A. Naus, M. T. Eom, C. B. Hellestrom, E. E. Cava, R. J. Regan, K. A. Rogado, N. Hayward, M. A. He, T. Slusky, J. S. Khalifah, P. Inumaru, K. Haas, M. Nature 410, 186 (2001).Google Scholar
5 Lee, S. Physica C 385, 31 (2003).Google Scholar
6 Lee, S. Mori, H. Masui, T. Eltsev, Y. Yamamota, A. Tajima, S. J. Phys. Soc. Japan 70, 2255 (2001).Google Scholar
7 Lee, S. Yamamoto, A. Mori, H. YEltsev, u. Masui, T. Tajima, S. Physica C 33, 378 (2002).Google Scholar
8 Lee, S. Masui, T. Mori, H. Eltsev, Yu. Yamamoto, A. Tajima, S. Supercond. Sci. Technol. 16, 213 (2003).Google Scholar
9 Angst, M. Puzniak, R. Wisniewski, A. Jun, J. Kazakov, S.M. Karpinski, J. Roos, J. Keller, H. Phys. Rev. Lett. 88, 167004 (2002).Google Scholar
10 Machida, Y. Sasaki, S. Fujii, H. Furuyama, M. Kakeya, I. Kadowaki, K.. Phys. Rev. B 67, 094507 (2003).Google Scholar
11 Kim, K.H.P., Choi, J.H., Jung, C.U., Chowdhury, P. Lee, H.S., Park, M.S., Kim, H.J., Kim, J.Y., Du, Z. Choi, E.M., Kim, M.S., Kang, W.N., Lee, S.I., Sung, G.Y., Lee, J.Y., Phys. Rev. B 65, 100510 (2002).Google Scholar
12 Zhu, Y. Wu, L. Volkov, V. Li, Q. Gu, G. Moodenbaugh, A.R., Malac, M. Suenaga, M. Tranquada, J. Physica C 356, 239 (2001).Google Scholar