Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T05:27:01.099Z Has data issue: false hasContentIssue false

Processing and Fabrication of YBa2Cu4O8 and YBa2Cu4O8/YBa2Cu3Ox Composites

Published online by Cambridge University Press:  28 February 2011

U. Balachandran
Affiliation:
Argonne National Laboratory, Argonne, IL 60439 and T. O. Mason Northwestern University, Evanston, IL 60201
M. E. Biznek
Affiliation:
Argonne National Laboratory, Argonne, IL 60439 and T. O. Mason Northwestern University, Evanston, IL 60201
K. C. Goretta
Affiliation:
Argonne National Laboratory, Argonne, IL 60439 and T. O. Mason Northwestern University, Evanston, IL 60201
B. W. Veal
Affiliation:
Argonne National Laboratory, Argonne, IL 60439 and T. O. Mason Northwestern University, Evanston, IL 60201
R. B. Poeppel
Affiliation:
Argonne National Laboratory, Argonne, IL 60439 and T. O. Mason Northwestern University, Evanston, IL 60201
Get access

Abstract

Powders of YBa2Cu4O8 (“124”) were prepared via solid state reaction of Y2O3, BaCO3, and CuO. The mixed precursors were heated in flowing oxygen of reduced total pressure, followed by cooling and annealing at 750°C under ambient pressure oxygen.The procedure produced orthorhombic 124 as the main phase, with YBa2Cu3Ox (“123”) as a minor impurity phase. Phase purity improved, and nearly phase-pure 124 was obtained, upon annealing the as-calcined powder in flowing oxygen at 800°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Zandbergen, H. W., Gronsky, R., Wang, K., and Thomas, G., Nature 331, 596 (1988).Google Scholar
2 Kogure, T. et al. , Physica C 156, 45 (1988).Google Scholar
3 Marshall, A. F. et al. , Phys. Rev. B37, 9353 (1988).Google Scholar
4 Zandbergen, H. W. and Thomas, G., Phys. Stat. Sol. A105. 207 (1988).Google Scholar
5 Marsh, P., Fleming, R. M., Mandich, M. L., Desantalo, A. M., Kwo, J., Hong, M., and Martinez-Miranda, L. G., Nature 334, 141 (1988).Google Scholar
6 Karpinski, J., Kaldis, E., Jilek, E., Rusiecki, S., and Bucher, B., Nature 336. 660 (1988).Google Scholar
7 Morris, D. E., Asner, N. G., Nickel, J. H., Sid, R. L., Wei, J. Y. T., and Post, J. E., Physica C 159, 287 (1989).Google Scholar
8 Balachandran, U., Biznek, M. E., Tomlins, J. W., Veal, B. W., and Poeppel, R. B., submitted to Physica C (1989).Google Scholar
9 Morris, D. E. et al. , Phys. Rev. B39, 7347 (1989).Google Scholar
10 Balachandran, U. et al. , Mater. Lett. (December 1989).Google Scholar
11 Cava, R. J. et al. , Nature 338, 328 (1989).Google Scholar
12 Gallagher, P. K., Advan. Ceram. Mater. 2, 632 (1987).Google Scholar