Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T05:33:28.539Z Has data issue: false hasContentIssue false

Polymer Brushes in Strong Shear Flow

Published online by Cambridge University Press:  10 February 2011

Gary S. Grest*
Affiliation:
Corporate Research Science Laboratories, Exxon Research & Engineering Company, Annan-dale, New Jersey 08801
Get access

Abstract

Polymers end-grafted to a surface in the presence of a shear flow are studied by molecular dynamics simulations. The solvent velocity field is observed to penetrate only a short distance into the brush consistent with predictions based on self-consistent field theory. The deformation of the brush is small except when the shear rate γ is very large. In this limit, while some of the polymer chains are stretched in the direction of flow, the brush height actually decreases slightly, in contrast to several theoretical predictions. When two surfaces bearing end-grafted chains are brought into contact, the normal force increases rapidly with decreasing plate separation, while the shear force is significantly smaller. For low relative velocity vw of the two walls, the surfaces slide pass each other with almost no change in the chain's radius of gyration or the amount of interpenetration, while for very large vw, there is significant stretching and some disentanglement of the chains. The results are in qualitatively good agreement with recent experiments using the surface force apparatus.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Patel, S. S. and Tirrell, M., Ann. Rev. Phys. Chem. 40, 597 (1989).Google Scholar
2. Taunton, H. J., Toprakcioglu, C., Fetters, L. J., and Klein, J., Nature 332, 712 (1988); Macromolecules 23, 571 (1990).Google Scholar
3. Klein, J., Kumacheva, E., Mahalu, D., Perahia, D., and Fetters, L. J., Nature 370, 634 (1994);Google Scholar
Klein, J., Kumacheva, E., Perahia, D., Mahalu, D., and Warburg, S., Faraday Discuss. 98, 173 (1994).Google Scholar
4. Klein, J., Ann. Rev. Mat. Sci. 26, 581 (1996).Google Scholar
5. Granick, S., Demirel, A. L., Cai, L. L., and Peanasky, J., Israel J. Chem. 35, 75 (1995);Google Scholar
Cai, L. L., Peanasky, J., and Granick, S., Trends Polym. Sci. 4, 47 (1996).Google Scholar
6. Bowden, F. P. and Tabor, D., The Friction and Lubrication of Solids (Clarendon, Oxford, 1950).Google Scholar
7. Tabor, D., Friction (Doubleday, New York, 1973).Google Scholar
8. Gee, M. L., McGuiggan, P. M., Israelachvili, J. N., and Homola, A. M., J. Chem. Phys. 93, 1895 (1990).Google Scholar
9. van Alsten, J. and Granick, S., Langmuir 6, 877 (1990).Google Scholar
10. Thompson, P. A. and Robbins, M. O., Science 250, 792 (1990);Google Scholar
Robbins, M. O. and Thompson, P. A., Science 253, 916 (1991).Google Scholar
11. Klein, J., Perahia, D., and Warburg, S., Nature 352, 143 (1991).Google Scholar
12. Barrat, J.-L., Macromolecules 25, 832 (1992).Google Scholar
13. Kumaran, V., Macromolecules 26, 2464 (1993).Google Scholar
14. Harden, J. L. and Cates, M., Phys. Rev. E 53, 3782 (1996).Google Scholar
15. Alexander, S., J. Phys. (Paris) 38, 983 (1977).Google Scholar
16. de Gennes, P.-G., Macromolecules 13, 1069 (1980).Google Scholar
17. Rabin, Y. and Alexander, S., Europhys. Lett. 13, 49 (1990).Google Scholar
18. Lai, P.-Y. and Binder, K., J. Chem. Phys. 98, 2366 (1993).Google Scholar
19. Miao, L., Guo, H., and Zuckermann, M. J., Macromolecules 29, 2289 (1996).Google Scholar
20. Grest, G. S. and Murat, M., in Monte Carlo and Molecular Dynamics Simulations in Polymer Science, edited by Binder, K. (Oxford University Press, New York, 1995), p. 476.Google Scholar
21. Murat, M. and Grest, G. S., Phys. Rev. Lett. 63, 1074 (1989).Google Scholar
22. Grest, G. S., Phys. Rev. Lett. 76, 4979 (1996).Google Scholar
23. Bacon, D. J. and Anderson, W. F., J. Molec. Graphics 6, 219 (1988);Google Scholar
Merritt, E. A. and Murphy, M. E. P., Acta Cryst. D50, 869 (1994).Google Scholar
24. Grest, G. S. and Murat, M., Macromolecules 26, 3108 (1993).Google Scholar
25. Peters, G. H. and Tildesley, D. J., Phys. Rev. E 52, 1882 (1995); Phys. Rev. E 54, 5493 (1996).Google Scholar
26. Thompson, P. A., Grest, G. S., and Robbins, M. O., Phys. Rev. Lett. 68, 3448 (1992);Google Scholar
Thompson, P. A., Robbins, M. O., and Grest, G. S., Israel J. Chem. 35, 93 (1995).Google Scholar
27. Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids (Clarendon, Oxford, 1987).Google Scholar
28. Dünweg, B., J. Chem. Phys. 99, 6977 (1993).Google Scholar
29. Grest, G. S., J. Chem. Phys. 105, 5532 (1996).Google Scholar
30. Raphaël, E., Pincus, P., and Fredrickson, G. H., Macromolecules 26, 1996 (1993).Google Scholar
31. Aubouy, M., Fredrickson, G. H., Pincus, P., and Raphaël, E., Macromolecules 28, 2979 (1995).Google Scholar
32. Milner, S. T., Macromolecules 24, 3704 (1991).Google Scholar
33. Nguyen, D., Clarke, C. J., Yu, Y. S., Eisenberg, A., Raifailovich, M. H., Sokolov, J., and Smith, G. S., unpublished (1996).Google Scholar
34. Granick, S., Science 253, 1374 (1992).Google Scholar
35. Israelachvili, J., Intermolecular & Surface Forces (Academic, London, 1994).Google Scholar