Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T09:54:55.251Z Has data issue: false hasContentIssue false

Point Defect Injection and Enhanced Sb Diffusion in Si During Co-Si and Ti-Si Reactions

Published online by Cambridge University Press:  26 February 2011

J.W. Honeycutr
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Raleigh, NC
G.A. Rozgonyi
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Raleigh, NC
Get access

Abstract

The effects of Co and Ti silicide film formation on diffusion of buried Sb-doped layers in Si have been investigated. Sb profile analysis by secondary ion mass spectrometry shows that greatly enhanced, non-uniform Sb diffusion occurs during reactions of various thicknesses (30- 300 nm) of Co and Ti by rapid thermal annealing. A simple non-equilibrium intrinsic diffusion model is invoked to estimate time-averaged excess vacancy concentrations. Vacancy concentrations of about 107 times equilibrium values are shown to exist during CoSi2 formation by reaction of a 30 nm Co film at 700°C for 5 min in Ar.Diffusion enhancements at large distances from silicide stripe edges are observed by bevel and etch techniques. These effects tend to decrease with increasing annealing time, indicating that film stresses may play an important role in the interfacial point defect injection process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Osburn, C.M., J. Electronic Materials 19, 67 (1990).Google Scholar
[2] Fahey, P.M., Griffin, P.B., and Plummer, J.D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
[3] Fahey, P.M. and Wittmer, M., MRS Symp. Proc. 163, 529 (1989).CrossRefGoogle Scholar
[4] Wen, D.S., Smith, P.L., Osbum, C.M., and Rozgonyi, G.A., Appl. Phys. Lett. 51, 1182 (1987).CrossRefGoogle Scholar
[5] Hu, S.M., Appl. Phys. Lett. 51, 308 (1987).CrossRefGoogle Scholar
[6] Tiller, W.A., J. Electrochem. Soc. 127, 625 (1980).Google Scholar
[7] Hayafuji, Y. and Kajiwara, K., J. Electrochem. Soc. 129, 2102 (1982).CrossRefGoogle Scholar
[8] Chu, W.K., Lau, S.S., Mayer, J.W., Muller, H., and Tu, K.N., Thin Solid Films 25, 393 (1975).CrossRefGoogle Scholar
[9] Van Gurp, G.J., van der Weg, W.F., and Sigurd, D., J. Appl. Phys. 49, 4011 (1978).CrossRefGoogle Scholar
[10] d'Heurle, F.M. and Petersson, C.S., Thin Solid Films 128, 283 (1985).CrossRefGoogle Scholar
[11] Fahey, P., Dutton, R.W., and Moslehi, M., Appl. Phys. Lett. 43, 683 (1983).Google Scholar
[12] Ganin, E., Davari, B., Harame, D., Scilla, G., and Sai-Halasz, G.A., Appl. Phys. Lett. 54, 2127 (1989).CrossRefGoogle Scholar
[13] Fair, R.B., in Impurity Doping Processes in Silicon, Wang, F.F.Y., ed., (North-Holland, New York, 1981), p. 315 .CrossRefGoogle Scholar
[14] Dannefaer, S., Mascher, P., and Kerr, D., Phys. Rev. Lett. 56, 2195 (1986).Google Scholar
[15] Rozgonyi, G.A. and Honeycutt, J.W., Mat. Res. Soc. Symp. Proc. 148, 3 (1989).Google Scholar
[16] Ahn, S.T., Kennel, H.W., Plummer, J.D., and Tiller, W.A., J. Appl. Phys. 64, 4914 (1988).Google Scholar
[17] d'Heurle, F.M., Solid State Devices 1985 (Elsevier Science Publishers, The Netherlands, 1986), p. 213.Google Scholar
[18] Van den hove, L., Vanhellemont, J., Wolters, R., Claassen, W., De Keersmaecker, R., and Declerck, G., Proc. of the First International Symp. on Advanced Materials for ULSI (The Electrochemical Society, Pennington, NJ, 1988).Google Scholar
[19] Manda, M.L., Shepard, M.L., Fair, R.B., and Massoud, H.Z., Mat. Res. Soc. Symp. Proc. 36, 71 (1985).Google Scholar
[20] Nygren, E., Aziz, M.J., Turnbull, D., Hays, J.F., Poate, J.M., Jacobson, D.C., and Hull, R., Mat. Res. Soc. Symp. Proc. 36, 77 (1985).Google Scholar