Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T13:59:01.007Z Has data issue: false hasContentIssue false

Photocatalytic effect of SrZnO2 thin films

Published online by Cambridge University Press:  28 November 2013

Tohru Okamoto
Affiliation:
Advanced Device Laboratories and Department of Physics, Tokyo University of Science. Shinjuku, Tokyo 162-8601, Japan
Taro Ogita
Affiliation:
Advanced Device Laboratories and Department of Physics, Tokyo University of Science. Shinjuku, Tokyo 162-8601, Japan
Susumu Harako
Affiliation:
Advanced Device Laboratories and Department of Physics, Tokyo University of Science. Shinjuku, Tokyo 162-8601, Japan
Shuji Komuro
Affiliation:
Toyo University, Kawagoe, Saitama 350-8585, Japan Phone: +81-3-3260-4272 E-mail:[email protected]
Xinwei Zhao
Affiliation:
Advanced Device Laboratories and Department of Physics, Tokyo University of Science. Shinjuku, Tokyo 162-8601, Japan
Get access

Abstract

The SrZnO2 thin films were fabricated by using laser ablation method. The films were annealed after deposition in order to improve the crystallinity. Water splitting experiments were carried out and hydrogen production over the SrZnO2 thin films were confirmed with no applied bias. The band gap of SrZnO2 was 3.41 eV which is 0.15 eV larger than that of ZnO. It suggests that the band gap was increased by doping Sr to ZnO, and the reducibility was improved. As a result, the rate of photocatalytic hydrogen production over the SrZnO2 was increased compared to ZnO.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Edwards, P. P., Kuznetsov, V. L., David, W. I. F., Philosophical Transactions Of The Royal Society A 365 (2007) 10431056.10.1098/rsta.2006.1965CrossRefGoogle Scholar
Fujishima, A., Honda, K., Kikuchi, S., Kogyo Kagaku Zasshi 72 (1969) 108113.10.1246/nikkashi1898.72.108CrossRefGoogle Scholar
Fujishima, A., Honda, K., Bull. Chem. Soc. Jpn., 44 (1971) 11481150.10.1246/bcsj.44.1148CrossRefGoogle Scholar
Fujishima, A., Honda, K., Nature, 238 (1972) 3738.10.1038/238037a0CrossRefGoogle Scholar
Subash, B., Krishnakumar, B., Sreedhar, B., Swaminathan, M., Shanthi, M., Superlattices and Microstructures, 54 ( 2013) 155.10.1016/j.spmi.2012.11.009CrossRefGoogle Scholar
Gratzel, M., Kiwi, J., Morrison, C. L., Davidson, R. S. and Tseung, A. C. C.: J. Chem.Soc., Faraday Trans. 181 (1985) 1883.10.1039/f19858101883CrossRefGoogle Scholar
Meissner, D., Memming, R. and Kastening, B.: J. Phys. Chem. 92 (1988) 3476.10.1021/j100323a032CrossRefGoogle Scholar
Allongue, Ph. and Tenne, R.: J. Electrochem. Soc. 138 (1991) 261.10.1149/1.2085553CrossRefGoogle Scholar
Huygens, I. M., Strubbe, K. and Gomes, W. P.: J. Electrochem. Soc. 147 (2000) 1797.10.1149/1.1393436CrossRefGoogle Scholar
Daneshvar, N., Salari, D. and Khataee, A.R.: J. Photochem. Photobiol. A 162 (2004) 317.10.1016/S1010-6030(03)00378-2CrossRefGoogle Scholar
Khodja, A. A., Sehili, T., Pilichowski, J.-F. and Boule, P.: J. Photochem. Photobiol. A, 141 (2001) 231.10.1016/S1010-6030(01)00423-3CrossRefGoogle Scholar
Kasahara, R., Harako, S., Komuro, S. and Zhao, X.. Japanese Journal of Applied Physics (2012).Google Scholar
Ryu, YR, Zhu, S, Budai, JD, Chandrasekhar, HR, Miceli, PF, White, HW, J Appl Phys, 88 (2000) 201.10.1063/1.373643CrossRefGoogle Scholar
Wang, L, Giles, NC, J Appl Phys, 94 (2003) 973.10.1063/1.1586977CrossRefGoogle Scholar
Stoneham, A. M., J. Dhote: “A compilation of crystal data for halides and oxides” (University College London, 2002) http://www.cmmp.ucl.ac.uk/∼ahh/research/crystal/sro.htm Google Scholar
Manavbasi, A. and LaCombe, J.C.: J. Lumin., 128, (2008) 129.10.1016/j.jlumin.2007.06.002CrossRefGoogle Scholar
Schnering, V.H.G. and Hoppe, R.Z.: Anorg. Allg. Chem. Einzeldarst, 141 (1960) 87.Google Scholar