Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T19:39:38.646Z Has data issue: false hasContentIssue false

Phase Control and Stability of Thin Silicon Films Deposited from Silane Diluted with Hydrogen

Published online by Cambridge University Press:  01 February 2011

Gijs van Elzakker
Affiliation:
[email protected], Delft University of Technology, DIMES, Feldmannweg 17, Delft, 2628 CT, Netherlands
Pavol Šutta
Affiliation:
[email protected], West Bohemian University, NT-RC, Univerzitní 8, Plzen, 306 14, Czech Republic
Frans D. Tichelaar
Affiliation:
[email protected], Delft University of Technology, NCHREM, Lorentzweg 1, Delft, 2628 CJ, Netherlands
Miro Zeman
Affiliation:
[email protected], Delft University of Technology, DIMES, Feldmannweg 17, Delft, 2628 CT, Netherlands
Get access

Abstract

Hydrogen dilution of silane during the rf-PECVD growth of a-Si:H absorber layers is used to suppress light-induced degradation of a-Si:H solar cells. The increased stability of cells and films deposited using hydrogen dilution is verified in an accelerated degradation experiment. At higher hydrogen dilutions the early phase transition to the microcrystalline phase complicates the growth of fully amorphous films as absorbers with a sufficient thickness. In a systematic study on the influence of various deposition conditions on the material properties the pressure is identified as an important factor for controlling the structural phase evolution of the films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Staebler, D. L. and Wronski, C. R., Appl.Phys. Lett. 31 (4), 292 (1977).Google Scholar
2 Yang, L. and Chen, L. F., Mater. Res. Soc. Proc. 336, Pittsburg, PA, 1994 p. 669 Google Scholar
3 Yang, J., Xu, X. and Guha, S., Mater. Res. Soc. Proc. 336, Pittsburg, PA, 1994 p. 687.Google Scholar
4 Wronski, C.R., Pearce, J.M., Koval, R.J. et al., Mater. Res. Soc. Proc. 715, Pittsburg, PA, 2002 A13.4.Google Scholar
5 Elzakker, G. van, Nadazdy, V., Tichelaar, F. D., Metselaar, J.W. and Zeman, M., Thin Solid Films 511-512, 252 (2006).Google Scholar
6 Koh, J., Lee, Y., Fujiwara, H. et al., Appl. Phys. Lett. 73 (11), 1526 (1998).Google Scholar
7 Elzakker, G. van, Tichelaar, F. D., and Zeman, M., Thin Solid Films (2007), (in press).Google Scholar
8 Wyrsch, N., Finger, F., McMahon, T. J. et al., J. Non-Cryst. Solids 137-138, 347 (1991).Google Scholar
9 Klazes, R. H., Broek, M. H. L. M. van den, Bezemer, J. et al., Phil. Mag. B 45, 377 (1982).Google Scholar
10 Zeman, M., “Advanced Amorphous Silicon Solar Cell Technologies”, Thin Film Solar Cells, ed. by Poortmans, J. and Arkhipov, V. (John Wiley & Sons, Chichester, 2006).Google Scholar
11 Fujiwara, H., Kondo, M., and Matsuda, A., Jpn. J. Appl Phys 41, 2821 (2002).Google Scholar
12 Alzar, C.L. Garrido, Mater. Sci. Eng. B 65, 123 (1999).Google Scholar