Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-01T01:30:54.420Z Has data issue: false hasContentIssue false

Percolation Conduction of Nanoclusters Films for Nano-devices

Published online by Cambridge University Press:  01 February 2011

Il-Suk Kang
Affiliation:
[email protected], National Nanofab Center, Daejeon, Korea, Republic of
Chi Won Ahn
Affiliation:
[email protected], National Nanofab Center, Daejeon, Korea, Republic of
Get access

Abstract

Electrical conduction of metal nanoclusters by percolation is a very interesting area in nano-device. For more functional nano-sensors consisting of multiple nanocluster blending film, various metals, such as Cu and Ni nanocluster films were fabricated using inert-gas condensation method. The percolation threshold of the films was measured. In addition, for the operation of sensors using these nanocluster films in air, aging experiments of the percolated films in air were carried out. While the percolation threshold was in connection not with the material species but with the area coverage of nanocluster films, the conductive characteristics according to the aging temperature depended on the material species. Reversible and irreversible conduction behaviors of nanocluster films were investigated with nanoscale microstructures using electron microscopes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Penn, S. G. He, L. and Natan, M. J. Curr. Opin. Chem. Bio. l. 7, 609 (2003).Google Scholar
2 West, J. L. and Halas, N. J. Curr. Opin. Biotechnol. 11, 215 (2000).Google Scholar
3 Jung, J. H. Kim, J. -H. Kim, T. W. Song, M. S. Kim, Y. -H. and Jin, S. Appl. Phys. Lett. 89, 122110 (2006).Google Scholar
4 Sieradzki, K. Bailey, K. and Alford, T. L. Appl. Phys. Lett. 79, 3401 (2001).Google Scholar
5 Likalter, A. A. Physica A. 291, 144 (2001).Google Scholar
6 Perego, M. Ferrari, S. Fanciulli, M. Assayag, G. Ben, Bonafos, C. Carrada, M. and Claverie, A. J. Appl. Phys. 95, 257 (2004).Google Scholar
7 Kanjilal, A. J. Lundsgaard Hansen, Gaiduk, P. Larsen, A. Nylandsted, Cherkashin, N. Claverie, A., Normand, P. Kapelanakis, E. Skarlatos, D. and Tsoukalas, D. Appl. Phys. Lett. 82, 1212 (2003).Google Scholar
8 , Kanoun, Souifi, A. Baron, T. and Mazon, F. Appl. Phys. Lett. 84, 5079 (2004).Google Scholar
9 Lassesson, A. Schulze, M. Lith, J. van, and Brown, S. A. Nanotechnology 19, 015502 (2008).Google Scholar
10 Hanszen, K.-J. Z. Phys. 157, 523 (1960).Google Scholar
11 Dufourcq, J. Mur, P. Gordon, M. J. Minoret, S. Coppard, R. Baron, T. Mater. Sci. Eng. C 27, 1496 (2007).Google Scholar
12 Itakura, T. Torigoe, K. and Esumi, K. Langmuir 11, 4129 (1995).Google Scholar
13 Hostetler, M. J. Zhong, C. J. Yen, B. K. H. Anderegg, J. Gross, S. M. Evans, N. D. Porter, M. and Murria, R. W. J. Am. Chem. Soc. 120, 9396 (1998).Google Scholar
14 Link, S. Wang, Z. L. and El-Sayed, M. A., J. Phys. Chem. B 103, 3529 (1999).Google Scholar
15 Freeman, R. G. Hommer, M. B. Grabar, K. C. Jackson, M. A. and Natan, M. J. J. Phys. Chem. 100, 718 (1996).Google Scholar
16 Wegner, K. Piseri, P. Tafreshi, H. Vahedi and Milani, P. J. Phys. D: Appl. Phys. 39, R439 (2006).Google Scholar
17 Reichel, R. Partridge, J. G. Dunbar, A. D. F. Brown, S. A. Caughley, O. and Ayesh, A. J. Nanoparticle Res. 8, 405 (2006).Google Scholar
18 Stauffer, D. Introduction to Percolation Theory, Taylor and Francis: London, 1985.Google Scholar