Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T07:21:35.106Z Has data issue: false hasContentIssue false

Opto-Electronic Properties and Stability of Artificial Zinc Oxide Molecules

Published online by Cambridge University Press:  01 February 2011

Liudmila A Pozhar
Affiliation:
[email protected], University of Alabama, the Center for Materials for Information Technology, P.O. Box 870209, Tuscaloosa, AL, 35487-0209, United States, (205) 348-0030, (205) 348-2346
Gail J. Brown
Affiliation:
[email protected], Air Force Research Laboratory, Materials and Manufacturing Directorate, 3005 Hobson Way, Bldg. 651, Wright-Patterson AFB, OH, 45433-7707, United States
Get access

Abstract

The Hartree-Fock (HF), restricted open shell HF (ROHF), and multiconfiguration self-consistent field (CI/CASSCF/MCSCF) approximations are used to study computationally the electronic properties of zinc oxide artificial molecules whose structure and composition have been derived from those of the symmetry elements of the wurtzite bulk lattice of zinc oxide. Such molecules may provide realistic models for small ZnO quantum dots (QDs) synthesized in “vacuum” or quantum confinement (such as that of well-defined nanopore arrays of silica and alumina membranes) using variety of methods in particular, supercritical fluid deposition. The computational direct optical transition energy (OTE) of the confined molecule appears to be several times smaller than that of the corresponding vacuum cluster. The charge and spin density distributions of these molecules (CDDs and SDDs, respectively) differ significantly, revealing dramatic effects of quantum confinement on electronic properties of Zn-O clusters. The obtained results suggest that manipulations with the electronic properties of the confined clusters by sophisticated design of their quantum confinement may provide means for synthesis of Zn-O – based electronic materials that combine a wide, tunable band gap with large, tunable exciton binding energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example, Driess, M., Merz, K., Schoenen, R., Rabe, S., Kruis, F. E., Roy, A., and Birkner, A., C.R. Chimie 6, 273 (2006); J. Antony, X. V. Chen, J. Morrison, L. Bergman, and Y. Quiang, Appl. Phys. Lett. 87, 241917 (2005) and references therein.Google Scholar
2. The Semiconductors - information web-site: http://www.semiconductors.co.ukGoogle Scholar
3. Mahamuni, S., Borgohain, K., Bendre, B. S., Leppert, V. J., and Risbud, S. H., J. Appl. Phys. 85, 2861 (1999).Google Scholar
4. Lee, J. K., Tewell, C. R., Schulze, R. K., Nastasi, M., Hamby, D. W., Lucca, D. A., Jung, H. S., and Hong, K. S., Appl. Phys. Lett. 86, 18311 (2005).Google Scholar
5. Driess, M., Merz, K., Schoenen, R., Rabe, S., et al., C.R. Chemie 6, 273 (2003).Google Scholar
6. Antony, J., Chen, X.B., Morrison, J., et. al., Appl. Phys. Lett. 87, 241917 (2005).Google Scholar
7. Jain, A., Kumar, V. and Kawazoe, Y., Comput. Mater. Sci. 36, 258 (2006).Google Scholar
8. Matxain, J. M., Fowler, J. E., and Ugalde, J. M., Phys. Rev. A 62, 053201 (2000).Google Scholar
9. Martins, J. B. L., Andres, J., Longo, E., and Taft, C. A., TheoChem, 330, 301 (1995).Google Scholar
10. Joswig, J.-O., Roy, S., Sarkar, P., and Springborg, M., Chem. Phys. Lett. 365, 75 (2002).Google Scholar
11. See Pozhar, L. A., Yeates, A. T., Szmulowicz, F. and Mitchel, W. C., Phys. Rev. B 74, 085306 (11) (2006) [also: Ibid, Virtual J. Nanoscale Sci & Technol. 14, No. 8 (2006), http://www.vjnano.org] and references therein.Google Scholar
12. Pearton, S. J., Norton, D. P., Ip, K., Heo, Y. W., and Steiner, T., Prog. Mater. Sci. 50, 293 (2005).Google Scholar