Published online by Cambridge University Press: 11 February 2011
Semi-insulating wurtzite GaN:C of high optical quality is obtained with CCl4 or CS2 doping sources in plasma-assisted molecular-beam epitaxy in Ga-rich growth conditions. The highest resistivity (107 Ω-cm) is found for [C] in the low 1018 cm−3 range. An increasing fraction of carbon appears to form electrically inactive pair defects for higher doping levels causing the concentration of uncompensated residual donors to be higher in films with [C] in the 1019 cm−3 range compared with [C] in the 1018 cm−3 range. Blue (2.9 eV) and yellow (2.2 eV) luminescence bands are associated with carbon-related defects, and additional support is provided for the association of the blue luminescence with the carbon-acceptor deactivating pair defect. Finally, the temperature dependence of the resistivity is described within the grain-boundary controlled transport model of Salzman et al., Appl. Phys. Lett. 76, 1431 (2000).