Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-08T00:09:52.157Z Has data issue: false hasContentIssue false

On Relaxation Kinetics in Liquid and Glassy Ag-Cu Metallic Alloy

Published online by Cambridge University Press:  11 February 2011

Alexander S. Bakai
Affiliation:
National Science Center Kharkov Institute of Physics and Technology, 61108 Kharkov, Ukraine
Nikolai P. Lazarev
Affiliation:
National Science Center Kharkov Institute of Physics and Technology, 61108 Kharkov, Ukraine
Kia L. Ngai
Affiliation:
National Science Center Kharkov Institute of Physics and Technology, 61108 Kharkov, Ukraine
Get access

Abstract

Molecular dynamics simulations of structure, thermodynamic and kinetic properties of model metallic AgCu alloy are performed to elucidate its behavior at glass transition. In spite of small variations of inherent structure of the alloy the relaxation kinetics undergo dramatic changes at the glass transition. The time dependences of the mean square displacements and the non-Gaussianity parameter show the signatures of anomalous diffusion in an intermediate time region. Analysis of time evolution of van Hove correlation function indicates the existence both jump displacements and short-range cooperative atomic rearrangements. Below Tg these cooperative rearrangements do not contribute to long-range diffusion but they still dominate the relaxation at short time.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCIES

1. Angell, C. A., Ngai, K. L., McKenna, G. B., McMillan, P. F., and Martin, S. W., J. Appl. Phys. 88, 3113 (2000)Google Scholar
2. Habasaki, J., Ngai, K. L., Hiwatary, Y., Phys. Rev. E 66, 021205 (2003).Google Scholar
3. Ngai, K. L., Comment Solid State Phys. 9, 121 (1979).Google Scholar
4. Qi, Y., Cagin, T., Kimura, Y. and Goddard, W. A. III, Phys. Rev. B59, 35273553 (1999).Google Scholar
5. Sutton, A. P. and Chen, J., Philos. Mag. Lett. 61, 139 (1990).Google Scholar
6. Berendsen, H. J. C., Postma, J. P. M., Gunsteren, W. F., DiNola, A. and Haak, J. R., J. Chem. Phys. 81(8), 36843690 (1984).Google Scholar
7. Morris, J. R., Wang, C. Z., Ho, K. M. and Chan, C. T., Phys. Rev. B49, 31093115 (1994).Google Scholar
8. Jonsson, H. and Andersen, H. C., Phys. Rev. Lett. 60, 22952298 (1988);Google Scholar
Clarke, A. S. and Jonsson, H., Phys. Rev. E47, 39753984 (1993).Google Scholar
9. Stillinger, F. H. and Weber, T. A., Science 225, 983 (1984).Google Scholar
10. Sheng, H. W., He, J. H. and Ma, E., Phys. Rev. B65, 184203 (2003).Google Scholar
11. Götze, W. and Sjögren, L., Rep. Prog. Phys. 55, 241 (1992).Google Scholar
12. Rahman, A., Phys. Rev. A 136, 405 (1964).Google Scholar
13. Gaukel, C. and Schober, H. R., Solid State Commun. 107, 15 (1998)Google Scholar
14. Caprion, D. and Schober, H. R., Phys. Rev. B62, 3709 (2000).Google Scholar
15. Kob, W., Donati, C., Plimpton, S. J., Poole, P. H. and Glotzer, S. C., Phys. Rev. Lett. 79, 2827 (1997).Google Scholar
16. Ngai, K. L., Rendell, R. W. and Leon, C., Phys. Rev. B 66, 064308 (2003)Google Scholar
17. Heuer, A., Kunow, M., Vogel, M. and Banhatti, R. D., arXiv:cond-mat/0205547 (2003).Google Scholar