Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T06:40:56.204Z Has data issue: false hasContentIssue false

Non-melt Laser Thermal Annealing of Shallow Boron Implantation for Back Surface Passivation of Backside-Illuminated CMOS Image Sensors

Published online by Cambridge University Press:  20 June 2011

Zahra AIT FQIR ALI-GUERRY
Affiliation:
STMicroelectronics, 850 rue Jean Monnet, 38920 Crolles, France Institut des Nanotechnologies Lyon (INL – site UCB), UMR 5270, Bât. Léon Brillouin, Université Lyon1, 43 bd du 11 novembre 1918, 69622 Villeurbanne Cedex, France
Karim HUET
Affiliation:
Excico, 13-21 Quai des Gresillons, 92230 Gennevilliers, France
Didier DUTARTRE
Affiliation:
STMicroelectronics, 850 rue Jean Monnet, 38920 Crolles, France
Rémi BENEYTON
Affiliation:
STMicroelectronics, 850 rue Jean Monnet, 38920 Crolles, France
Daniel BENSAHEL
Affiliation:
STMicroelectronics, 850 rue Jean Monnet, 38920 Crolles, France
Philippe NORMANDON
Affiliation:
STMicroelectronics, 850 rue Jean Monnet, 38920 Crolles, France
Guo-Neng LU
Affiliation:
Institut des Nanotechnologies Lyon (INL – site UCB), UMR 5270, Bât. Léon Brillouin, Université Lyon1, 43 bd du 11 novembre 1918, 69622 Villeurbanne Cedex, France
Get access

Abstract

Back surface passivation is one of the major challenges in the backside illuminated sensor technology. Ion implantation followed by non-melt pulsed Laser Thermal Annealing (LTA) has been identified as a promising candidate to address this issue. In this work, a shallow B-doped layer is implanted at the backside, further activated using LTA in the non-melt regime. LTA process effectiveness in terms of crystal damage recovery as well as dopant diffusion and activation is studied through room-temperature photoluminescence, Secondary Ion Mass Spectroscopy and four-point probe sheet resistance. These studies demonstrate that non-melt LTA with multiple pulses induces high activation without visible diffusion with an effective curing of the implantation-induced crystalline defects. This is made possible thanks to a submicrosecond process timescale coupled to a reasonable number of shots as shown by thermal simulations and simple diffusion estimations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Westhoff, R.C., Burke, B.E., Clark, H.R., Loomis, A.H., Young, D.J., Gregory, J.A., Reich, R.K., Proc. SPIE, edited by Bodegom, E. and Nguyen, V., San Jose, CA (2009), Vol. 7249, p. 111.Google Scholar
2. Bourdon, H., Halimaoui, A., Venturini, J., Gonzatti, F., Dutartre, D., 15th International Conference on Advanced Thermal Processing of Semiconductors, Catania (2007), p. 275.10.1109/RTP.2007.4383854Google Scholar
3. Ait Fqir Ali-Guerry, Z., Marty, M., Beneyton, R., Moussy, N., Venturini, J., Huet, K., Lu, G.N., Dutartre, D., 21th IEEE International Conference on Microelectronics, Marrakech (2009), p. 386389.Google Scholar
4. Ait fqir ali-Guerry, Z., Dutartre, D., Beneyton, R., Normandon, P., Lu, G.-N., Sens Lett, (to be published)Google Scholar
5. Earles, S., Law, M.K., Jones, K.S., Fraser, J., Talwar, S., Downey, D. and Arevalo, E., 12th IEEE international Conference on Advanced Thermal Processing of Semiconducteurs, Oregon (2004), p. 143147.Google Scholar
6. Huet, K., Lin, R., Boniface, C., Desse, F., Petersen, D.H., Hansen, O., Variam, N., La Magna, A., Schuhmacher, M., Jensen, A., Nielsen, P.F., Besaucele, H., Venturing, J., 17th IEEE International Conference on Advanced Thermal Processing of Semiconductors, Gainesville (2009).Google Scholar
7. Fransilla, S., Diffusion, in Introduction to Microfabrication, 2nd edition, edited by Wiley, & Sons, , 2010, p. 165172.10.1002/9781119990413.ch14Google Scholar