Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T05:24:00.165Z Has data issue: false hasContentIssue false

A Molecular Architectural Approach to Second-Order Nonlinear Optical Materials

Published online by Cambridge University Press:  21 February 2011

Xiaoguang Yang
Affiliation:
The Chemical Science and Technology Division (CST-4 and CST-6), Los Alamos National Laboratory, Los Alamos, NM 87545
Duncan McBranch
Affiliation:
The Chemical Science and Technology Division (CST-4 and CST-6), Los Alamos National Laboratory, Los Alamos, NM 87545
Basil Swanson
Affiliation:
The Chemical Science and Technology Division (CST-4 and CST-6), Los Alamos National Laboratory, Los Alamos, NM 87545
Dequan Li
Affiliation:
The Chemical Science and Technology Division (CST-4 and CST-6), Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

The design and synthesis of a family of calix[4]arene-based nonlinear optical (NLO) chromophores are discussed. The calixarene chromophores are macrocyclic compounds consisting of four simple D-π-A units bridged by methylene groups. These molecules were synthesized such that four D-π-A units of the calix[4]arene were aligned along the same direction with the calixarene in a cone conformation. These nonlinear optical super-chromophores were subsequently fabricated into covalently bound self-assembled monolayers on the surfaces of fused silica and silicon. Spectroscopic second harmonic generation (SHG) measurements were carried out to determine the absolute value of the dominant element of the second-order nonlinear susceptibility, d33, and the average molecular alignment, ψ. We find a value of d33 = 60 pm/V at a fundamental wavelength of 890 nm, and ψ˜ 36° with respect to the surface normal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ashwell, G. L., Jackson, P. D., Crossland, W. A., Nature 368, 438 (1994)Google Scholar
2. (a) Li, D., Ratner, M. A., Marks, T. J., Zhang, C. H., Yang, J., Wong, G. K., J. Am. Chem. Soc. 112, 7389 (1990). (b) H. E. Katz, G. Scheller, T. M. Putvinski, M. L. Schilling, W. L. Wilson, C. E. D. Chidsey, Science 254, 1485 (1991).Google Scholar
3. Eich, M., Bjorklund, G. C., Yoon, D. Y., Polym. Adv. Tech. 1, 189 (1990).Google Scholar
4. (a) Kelderman, E., Derhaeg, L., Heesink, G. J. T., Verboom, W., Engbersen, J. F. J., Hulst, N. F., Persoons, A., Reinhoudt, D. N., Angew. Chem. Int. Ed. Engl. 31, 1075 (1992). (b) E. Kelderman, G. J. T. Heesink, L. Derhaeg, T. Verbiest, P. T. A. Klaase, W. Verboom, J. F. J. Engbersen, N. F. Hulst, K. Clays, A. Persoons, D. N. Reinhoudt, Adv. Mater. 5, 925 (1993).Google Scholar
5. Gutsche, C. D., Calixarenes, (Royal Society of Chemistry, 1989).Google Scholar
6. Chang, S. -K., Cho, I., J. Chem. Soc. Perkin Trans. 1,211 (1986).Google Scholar
7. Verboom, W., Durie, A., Egberink, R. J. M., Asfari, Z., Reinhoudt, D. N., J. Org. Chem. 57, 1313 (1992).Google Scholar
8. Li, D., Buscher, C. T., Swanson, B. I., Chem. Mater. 6, 803 (1994).Google Scholar
9. Li, D., Swanson, B. I., Robinson, J. M., Hoffbauer, Mark A., J. Am. Chem. Soc. 115, 6975 (1993).Google Scholar
10. Zhang, T., Zhang, C., Wong, G. K., J. Opt. Soc. Am. B. 7, 902 (1990).Google Scholar
11. Maker, P. D., Terhune, R. W., Nisenoff, M., Savage, C. M., Phys. Rev. Lett. 8, 21 (1962).Google Scholar