Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T05:28:46.743Z Has data issue: false hasContentIssue false

Modeling of a Rotaxane-based Molecular Device

Published online by Cambridge University Press:  11 February 2011

Xiange Zheng
Affiliation:
Department of Chemistry, Drexel University, Philadelphia, PA 19104
Karl Sohlberg
Affiliation:
Department of Chemistry, Drexel University, Philadelphia, PA 19104
Get access

Abstract

A computational procedure is presented for investigating photo-induced switchable rotaxanes and demonstrated for a known system. This procedure starts with the generation of more than 104 chemically reasonable rotaxane conformations based on an empirical intramolecular potential energy function. Single-point energy calculations at the semi-empirical (AM1) level are carried out for each structure in the singlet (ground), triplet, and anionic doublet states. The structural features are assigned and then correlated with energy for each state. What emerges is a profile of the structure-energy relationship that captures the salient features of the system that endow it with device-like character. Full geometry optimization of a subset of co-conformations (∼1%) demonstrates that the procedure based on single-point calculations is sufficient to obtain a profile of the relationship of structural features to energy that is consistent with experiments, at greatly reduced computational cost.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chiu, S. H., Rowan, S. J., Cantrill, S. J., Ridvan, L., Ashton, P. R., Garrell, R. L. and Stoddart, J. F., Tetrahedron, 58, 807814 (2002).Google Scholar
2. Brouwer, A. M., Frochot, C., Gatti, F. G., Leigh, D. A., Mottier, L., Paolucci, F., Roffia, S. and Wurpel, G. W. H., Science, 291, 21242128 (2001).Google Scholar
3. Leigh, D. A., Troisi, A. and Zerbetto, F., Chemistry-a European Journal, 7, 14501454 (2001).Google Scholar
4. Reuter, C., Schmieder, R. and Vogtle, F., Pure and Applied Chemistry, 72, 22332241 (2000).Google Scholar
5. Sohlberg, K., Sumpter, B. G. and Noid, D. W., Journal of Molecular Structure-Theochem, 491, 281286 (1999).Google Scholar
6. Wurpel, G. W. H., Brouwer, A. M., van Stokkum, I. H. M., Farran, A. and Leigh, D. A., Journal of the American Chemical Society, 123, 1132711328 (2001).Google Scholar
7. Leigh, D. A., Troisi, A. and Zerbetto, F., Angewandte Chemie-International Edition, 39, 350353 (2000).Google Scholar
8. Dewart, J., Zoebisch, E., Healy, E. and Stewart, J., HyperchemTM Release 5.01 for WindowsTM. Copyright 1996 by Hypercube Inc. 419 Phillip Street, Waterloo, Ontario N2L3X2 CANADA., 107, 3902.Google Scholar
9. Ponder, J. W., Software Tools for Molecular Design. Version 3.9. Copyright © 1990–2001. http://dasher.wustl.edu/tinker/.Google Scholar
10. Jorgensen, W. L., Maxwell, D. S. and TiradoRives, J., Journal of the American Chemical Society, 118, 1122511236 (1996).Google Scholar
11. Davila, L. Y. A. and Caldas, M. J., Journal of Computational Chemistry, 23, 11351142 (2002).Google Scholar
12. Fabian, W. M. F., Journal of Computational Chemistry, 9, 369377 (1988).Google Scholar
13. Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S. J., Windus, T. L., Dupuis, M. and Montgomery, J. A., Journal of Computational Chemistry, 14, 13471363 (1993).Google Scholar
14. Liu, L., Li, X. S., Song, K. S. and Guo, Q. X., Journal of Molecular Structure-Theochem, 531, 127 (2000).Google Scholar
15. Sohlberg, K. and Tarbet, B. J., Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 23, 203212 (1995).Google Scholar
16. Buemi, G., Zuccarello, F. and Raudino, A., Journal of Molecular Structure-THEOCHEM, 164, 379389 (1988).Google Scholar