Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T09:46:12.632Z Has data issue: false hasContentIssue false

Microstructural Aspects and Mechanism of Degradation of 4H-SiC PiN Diodes under Forward Biasing

Published online by Cambridge University Press:  15 March 2011

Pirouz Pirouz
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7204, U.S.A. ([email protected])
Ming Zhang
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106-7204, U.S.A. ([email protected])
Augustinas Galeckas
Affiliation:
Department of Microelectronics and Information Technology, Royal Institute of Technology (KTH), SE 16440 Stockholm-Kista, Sweden
Jan Linnros
Affiliation:
Department of Microelectronics and Information Technology, Royal Institute of Technology (KTH), SE 16440 Stockholm-Kista, Sweden
Get access

Abstract

Devices fabricated from the wide bandgap semiconductor SiC have many advantages over those made from conventional semiconductors. Thus, performance characteristics of some 4H-SiC devices can be two orders of magnitude better than equivalent devices made from silicon. On the other hand, new and unexpected problems have emerged with the operation of some SiC devices that need to be understood and solved before further progress can be made in this area. One of the most intriguing problems has been the degradation of bipolar PiN diodes that have major advantages over unipolar Schottky barrier diodes at high blocking voltages. The electrical degradation of the PiN diodes refers to a drop in voltage under extended forward current operation. The degradation appears to be associated with the appearance of stacking faults (SFs) in the entire base region of the diode. In this paper, we discuss some puzzling aspects of stacking fault formation in such diodes. Electroluminescence as well as TEM has been used to investigate the degradation problem and, based on experimental results, the formation of stacking faults within the device, possible sources of partial dislocations responsible for the stacking faults, and the enhanced motion of dislocations under forward biasing are considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shockley, W., Forward to Silicon Carbide: A High Temperature Semiconductor (Oxford, 1960).Google Scholar
2. Cooper, J. A. Jr. and Agarwal, A., Proceedings of the IEEE 90(6), 956968 (2002).Google Scholar
3. Neudeck, P. G., Okojie, R. S., and Chen, L.-Y., Proceedings of the IEEE 90(6), 1065 (2002).Google Scholar
4. Ryu, S.-H., Agarwal, A. K., Singh, R., and Palmour, J., IEEE Electro Device Lett. 22, 124 (2001).Google Scholar
5. Sze, S. M., Semiconductor Devices: Physics and Technology, (John Wiley, New York, 1985).Google Scholar
6. Lendenmann, H., Dahlquist, F., Johansson, N., Söderholm, R., Nilsson, P. Å., Bergman, J. P., and Skytt, P., in Proc. 3rd European Conference on Silicon Carbide and Related Materials, ed. Pensl, G. et al. (Materials Science Forum 353–356, Zürich, Switzerland, 2001), pp. 727730.Google Scholar
7. Bergman, J. P., Lendenmann, H., Nilsson, P. Å., Lindefelt, U., and Skytt, P., in Proc. 3 rd European Conference on Silicon Carbide and Related Materials, ed. Pensl, G. et al. , (Materials Science Forum 353–356, Zürich, Switzerland, 2001), pp. 299302.Google Scholar
8. Soloviev, S., Cherednichenko, D., Gao, Y., Grekov, A., Ma, Y., and Sudarshan, T. S., J. Appl. Phys. 95(8), (2004). In press.Google Scholar
9. Müller, S. G., Sumakeris, J. J., Brady, M. F., Glass, R. C., Hobgood, H. M., Jenny, J. R., Leonard, R., Malta, D. P., Paisley, M. J., Powell, A. R., Tsvetkov, V. F., Allen, S. T., Das, M. K., Palmour, J. W., and Carter, C. H. Jr., Eur. Phys J. (2004). In press.Google Scholar
10. Kordina, O., Bergman, J. P., Henry, A., Janzén, E., Savage, S., Andre, J., Ramberg, L. P., Lindefelt, U., H. W., , and Bergman, K., Appl. Phys. Lett. 67(11), 15611563 (1995).Google Scholar
11. Dyakonova, N. V., Ivanov, P. A., Kozlov, V. A., Lenvinshtein, M. E., Palmour, J. W., Rumyantsev, S. L., and Singh, R., in Proc. ICSCRM - 1999, edited by Carter, C. H. Jr. et al. , (Materials Science Forum 338–342, Zurich, Switzerland, 2000), pp. 13191322.Google Scholar
12. Weeks, J. D., Tully, J. C., and Kimerling, L. C., Phys. Rev. B 12(8), 32863292 (1975).Google Scholar
13. Sumi, H., Phys. Rev. B 29(8), 46164630 (1984).Google Scholar
14. Maeda, K. and Takeuchi, S., in Dislocation in Solids, Vol. 10, edited by Nabarro, F. R. N. and Duesbery, M. S. (North-Holland Publishing Co., Amsterdam, 1996), p. 443504.Google Scholar
15. Konstantinov, A. O. and Bleichner, H., Appl. Phys. Lett. 71(25), 37003702 (1997).Google Scholar
16. Galeckas, A., Linnros, J., Breitholtz, B., and Bleichner, H., J. Appl. Phys. 90(2), 980 (2001).Google Scholar
17. Stahlbush, R. E., Fatemi, M., Fedison, J. B., Arthur, S. D., Rowland, L. B., and Wang, S., J. Electron. Mater. 31, 827 (2002).Google Scholar
18. Demenet, J.-L., Hong, M. H., and Pirouz, P., Scripta mater. 43(9), 865870 (2000).Google Scholar
19. Zhang, M., Hobgood, H. M., Demenet, J. L., and Pirouz, P., J. Mater. Res. 18(5), 1087 (2003).Google Scholar
20. Galeckas, A., Linnros, J., and Pirouz, P., Appl. Phys. Lett. 81(5), 883885 (2002).Google Scholar
21. Kimerling, L. C. and Lang, D. V., in Lattice Defects in Semiconductors, (Inst. Phys. Conf. Ser. No. 23, London, 1975), p. 589.Google Scholar
22. Iwata, H., Lindefelt, U., Öberg, S., and Briddon, P. R., Phys. Rev. B 65(3), 033203–1 (2002).Google Scholar
23. Miao, M. S., Limpijumnong, S., and Lambrecht, W. R. L., Appl. Phys. Lett. 79, 4360 (2001).Google Scholar
24. Liu, J. Q., Skowronski, M., Hallin, C., Söderholm, R., and Lendenmann, H., Appl. Phys. Lett. 80(5), 749751 (2002).Google Scholar
25. Persson, P. O., Hultman, L., Jacobson, H., Bergman, J. P., Janzén, E., Molina-Aldareguia, J. M., Clegg, W. J., and Tuomi, T., Appl. Phys. Lett. 80(25), 48524854 (2002).Google Scholar
26. Twigg, M. E., Stahlbush, R. E., Fatemi, M., Arthur, S. D., Fedison, J. B., Tucker, J. B., and Wang, S., Appl. Phys. Lett. 82(15), 24102412 (2003).Google Scholar
27. Zhang, M., Lendenmann, H., and Pirouz, P., Appl. Phys. Lett. 83(16), 33203322 (2003).Google Scholar
28. Samant, A. V., Ph.D. Thesis, Case Western Reserve University, 1999.Google Scholar
29. Hong, M. H., Samant, A. V., and Pirouz, P., Phil. Mag. A 80(4), 919935 (2000).Google Scholar
30. Pirouz, P., Demenet, J. L., and Hong, M. H., Phil. Mag. A 81(5), 12071227 (2001).Google Scholar
31. Petroff, P. and Hartman, R. L., Appl. Phys. Lett. 23(8), 469471 (1973).Google Scholar
32. Petroff, P. and Hartman, R. L., J. Appl. Phys. 45(9), 38993903 (1974).Google Scholar
33. Lang, D. V. and Kimerling, L. C., Phys. Rev. Lett. 33(8), 489492 (1974).Google Scholar
34. Pilyankevich, A. N. and Britun, V. F., phys. stat. sol. (a) 82449–457 (1984).Google Scholar
35. Maeda, K., Suzuki, K., and Ichihara, M., Microsc. Microanal. Microstruct. 4, 211220 (1993).Google Scholar
36. Yang, J. W., Ning, X. J., and Pirouz, P., “Dislocations in SiC and their Recombination-Enhanced Motion” in Japan-US Workshop on Functional Fronts in Advanced Ceramics, edited by Yanagida, K. and Newnham, R. (Ceramic Society of Japan, Tsukuba, Japan, 1994), p. 5558.Google Scholar
37. Pirouz, P., Zhang, M., Demenet, J.-L., and Hobgood, H. M., J. Appl. Phys. 93(6), 3279 (2003).Google Scholar
38. Skowronski, M., Liu, J. Q., Vetter, W. M., Dudley, M., Hallin, C., and Lendenmann, H., J. Appl. Phys. 92(8), 46994704 (2002).Google Scholar
39. Hirsch, P. B., J. Microscopy 118(1), 312 (1980).Google Scholar
40. Heggie, M. and Jones, R., Phil. Mag. B 48(4), 365377 (1983).Google Scholar