Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T07:10:13.071Z Has data issue: false hasContentIssue false

Microfluidic Devices for Novel Synthesis

Published online by Cambridge University Press:  26 February 2011

Kyung Choi*
Affiliation:
[email protected], Bell Labs, Nanotechnology, 600-700 mauntain Ave, Murray Hill, NJ, 07974, United States
Get access

Abstract

We demonstrate here functional polymeric particle synthesis by employing a microfluidic approach. The functional polymer is MIP system (molecularly imprinted polymer), which can be produced by “molecular imprinting”, a general protocol for the preparation of “synthetic receptor or binding sites” with specific recognition for targeted organic molecules. The recognition of complex molecules and biological entities is a necessary component for fabricating chemical sensors, diagonostic bio-sensors, and for drug delivery systems. We have obtained homogeneous MIP's microparticles, which may have high affinity receptor sites only by fabricating a microreactor.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a) Kim, E., Xia, Y. N., and Whitesides, G. M., J. Am. Chem. Soc. 118, 5722 (1996). (b) Y. N. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, Chem. Rev. 99, 1823 (1999).Google Scholar
2. (a) Blanchet, G. and Rogers, J. A., Journal of Imaging Science and Technology 47(4), 296 (2003). (b) C. J. Love, J. R. Anderson, and G. M. Whitesides, MRS Bulletin 26(7), 523 (2001).Google Scholar
3. (a) Choi, K. M. and Rogers, J. A., J. Am. Chem. Soc., 125, 4060 (2003). (b) K. M. Choi, J. Phys. Chem. 109, 21525 (2005).Google Scholar
4. Conrad, P. G., Nishmura, P. T., Aherne, D., Schwartz, B. J., Wu, D., Fang, N., Zhang, X., Roberts, J., Shea, K. J., Adv. Mater. 11, 5274 (2003).Google Scholar
5. Thorsen, T., Maerkl, S. J. and Quake, S. R., Science, 298, 580 (2002).Google Scholar
6. Duan, X., Niu, C., Sahi, V., Chen, J., Parce, J. W., Empedocles, S., Goldman, J. L., Nature 425, 274 (2003).Google Scholar
7. Wu, T., Mei, Y., Cabral, J., Xu, C., Beers, K. L., J. Am. Chem. Soc. 126, 9880 (2004).Google Scholar
8. Kobayashi, J., Mori, Y., Okamoto, K., Akiyama, R., Ueno, M., Kitamori, T., Kobayashi, S., Science 304, 1305 (2004).Google Scholar
9. Haswell, S. J., Middleton, R. J., O'Sullivan, B., Skelton, V., Watts, P., Styring, P., Chem. Commun. (2001).Google Scholar