Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T17:36:01.600Z Has data issue: false hasContentIssue false

Methylamine Growth of SiCN Films Using ECR-CVD

Published online by Cambridge University Press:  10 February 2011

C.-Y. Wen
Affiliation:
Center for Condensed Matter Sciences, National Taiwan Unversity, Taipei, Taiwan
J.-J. Wu
Affiliation:
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
H.J. Lo
Affiliation:
Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
L.C. Chen
Affiliation:
Center for Condensed Matter Sciences, National Taiwan Unversity, Taipei, Taiwan
K.H. Chen
Affiliation:
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
S.T. Lin
Affiliation:
Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
Y.-C. Yu
Affiliation:
Institute of Physics, Academia Sinica, Taipei, Taiwan
C.-W. Wang
Affiliation:
Institute of Physics, Academia Sinica, Taipei, Taiwan
E.-K. Lin
Affiliation:
Institute of Physics, Academia Sinica, Taipei, Taiwan
Get access

Abstract

Continuous polycrystalline SiCN films with high nucleation density have been successfully deposited by using CH3NH2, as carbon source gas in an ECR-CVD reactor. Fom the kinetic point of view, using CH3NH2, as carbon source could provide more abundant active carbon species in the gas phase to enhance the carbon incorporation in the SiCN films. The compositions of the SiCN films analyzed from Rutherford Backscattering Spectroscopy showed that higher [CH3NH2,]/[SiH4] ratio led to higher carbon content in the films. Moreover, a lower carbon content was measured when the film was deposited at higher substrate temperature. The direct band gap of the aforementioned SiCN films determined using PzR is around 4.4 eV, indicating a wide band gap material for blue-UV optoelectronics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chen, L.C., Chen, C.K., Wei, S.L., Bhusari, D.M., Chen, K.H., Chen, Y.F., Jong, Y.C. and Huang, Y.S Appl. Phys. Lett. 72, p. 2463 (1998).Google Scholar
2 Sato, G., Samano, E.C., Machorro, R. and Cota, L. J. Vac. Sci. Technol. A 16, p. 1311 (1998).Google Scholar
3 Gomez, F.J., Prieto, P., Elizalde, E. and Piqueras, J. Appl. Phys. Lett. 69, p. 773 (1996).Google Scholar
4 Chen, L.C., Yang, C.Y., Bhusari, D.M., Chen, K.H., Lin, M.C., Lin, J.C., and Chuang, T.J. Diamond and Related Mater. 5, p. 514 (1996).Google Scholar
5 Chen, L.C., Bhusari, D.M., Yang, C.Y., Chen, K.H., Chuang, T.J., Lin, M.C., Chen, C.K., and Huang, Y.F. Thin Solid Films 303, p. 66 (1997).Google Scholar
6 Viera, G., Andujar, J.L., Sharma, S.N. and Bertran, E. Diamond and Related Mater. 7, p. 407 (1998).Google Scholar
7 Badzian, A., Badzian, T., Drawl, W.D., and Roy, R. Diamond and Related Mater. 7, p. 1519 (1998).Google Scholar
8 Riedel, R., Greiner, A., Miehe, G., Dressier, W., Fuess, H., Bill, J. and Aldinger, F., Angew Chem. Int. Ed. Engl. 36, p. 603 (1997).Google Scholar
9 Chen, K.H., Wu, J.-J., Wen, C.-Y., Chen, L.C., Fan, C.-W., Kuo, P.-F., Chen, Y.-F., Huang, Y.-S., Thin Solid Films 355–356, p. 203 (1999).Google Scholar
10 Wu, J.-J., Chen, K.H., Wen, C.-Y., Chen, L.C., Wang, J.K., Yu, Y.-C., Wang, C.-W., and Lin, E.-K., submitted to J. Chem. Mater.Google Scholar
11 Wu, J.-J., Chen, K.H., Wen, C.-Y., Chen, L.C., Guo, X.-J., Lo, H.J., Lin, S.T., Yu, Y.-C., Wang, C.-W., and Lin, E.-K., accepted by Diamond and Related Mater.Google Scholar
12 Feng, Y., Zhou, Z., Zhou, Y., Zhao, G. Nul. Instr. and Meth. B 86, p. 225 (1994).Google Scholar
13 Feng, Y., Zhou, Z., Zhao, G., Yang, F. Nul. Instr. and Meth. B 94, p. 11 (1994).Google Scholar
14 Yu, P.Y, Cardona, M., Fundamentals of Semiconductors, Springer, Berlin, 1996, pp. 307.Google Scholar
15 Lin, D.Y., Li, C.F., Huang, Y.S., Jong, Y.C., Chen, Y.F., Chen, L.C., Chen, C.K., Chen, K.H., Bhusari, D.M., Phys. Rev. B 56, p. 6498 (1997).Google Scholar
16 Westly, F., Frizzell, D.H., Herron, J.T., Hampson, R.F., Mallard, W.G. NIST Chemical Kinetics Database, Version 6.01, U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology, Standard Reference Data Program: Gaithersburg, MD.Google Scholar
17 Marton, D., Boyd, K.J., Al-Bayati, A.H., Todorov, S.S., Rabalais, J.W. Phys. Rev. Lett. 73, p. 118 (1994).Google Scholar
18 Kubler, L., Bischoff, J.L., and Bolmont, D. Phys. Rev. B 38, p. 13113 (1988).Google Scholar
19 Hsieh, C.H., Huang, Y.S., Tiong, K.K., Fan, C.W., Chen, Y.F., Chen, L.C., Wu, J.J., and Chen, K.H., accepted by J. Appl. Phys. (1999).Google Scholar