Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T20:18:52.029Z Has data issue: false hasContentIssue false

Mechanisms for Defect Creation and Removal in Hydrogenated and Deuterated Amorphous Silicon Studied using Thin Film Transistors

Published online by Cambridge University Press:  01 February 2011

Andew Flewitt
Affiliation:
[email protected], Cambridge University, Electrical Engineering Division, 9, J J Thomson Avenue, Cambridge, N/A, CB3 0FA, United Kingdom
Shufan Lin
Affiliation:
[email protected], Cambridge University, Electrical Engineering Division, 9, J J Thomson Avenue, Cambridge, N/A, CB3 0FA, United Kingdom
William I Milne
Affiliation:
[email protected], Cambridge University, Electrical Engineering Division, 9, J J Thomson Avenue, Cambridge, N/A, CB3 0FA, United Kingdom
Ralf B Wehrspohn
Affiliation:
[email protected], University of Paderborn, Department of Physics, 33095 Paderborn, N/A, N/A, Germany
Martin J Powell
Affiliation:
[email protected], 252, Valley Drive, Kendal, Cumbria, LA9 7SL, United Kingdom
Get access

Abstract

It has been widely observed that thin film transistors (TFTs) incorporating an hydrogenated amorphous silicon (a-Si:H) channel exhibit a progressive shift in their threshold voltage with time upon application of a gate bias. This is attributed to the creation of metastable defects in the a-Si:H which can be removed by annealing the device at elevated temperatures with no bias applied to the gate, causing the threshold voltage to return to its original value. In this work, the defect creation and removal process has been investigated using both fully hydrogenated and fully deuterated amorphous silicon (a-Si:D) TFTs. In both cases, material was deposited by rf plasma enhanced chemical vapour deposition over a range of gas pressures to cover the a-g transition. The variation in threshold voltage as a function of gate bias stressing time, and annealing time with no gate bias, was measured. Using the thermalisation energy concept, it has been possible to quantitatively determine the distribution of energies required for defect creation and removal as well as the associated attempt-to-escape frequencies. The defect creation and removal process in a-Si:H is then discussed in the light of these results.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

1. Powell, M.J., Berkel, C. van, Franklin, A.R., Deane, S.C. and Milne, W.I., Phys. Rev. B, 45, 41604170 (1992)Google Scholar
2. Staebler, D. and Wronski, C., Appl. Phys. Lett., 31, 292294 (1977)Google Scholar
3. Mentley, D.E., Proceedings of the Ieee, 90, 453459 (2002)Google Scholar
4. Nickel, N. and Jackson, W., Phys. Rev. B, 51, 48724881 (1995)Google Scholar
5. Branz, H., Phys. Rev. B, 59, 54985512 (1999)Google Scholar
6. Powell, M.J., Deane, S.C. and Wehrspohn, R.B., Phys. Rev. B, 66, 155212–1 (2002)Google Scholar
7. Wehrspohn, R.B., Deane, S.C., French, I.D. and Powell, M.J., J. Non-Cryst. Solids, 266–269, 459463 (2000)Google Scholar
8. Palinginis, K.C., Cohen, J.D., S. Guha and Yang, J.C., Phys. Rev. B, 6320 (2001)Google Scholar
9. Street, R.A., Kakalios, J., Tsai, C.C. and Hayes, T.M., Phys. Rev. B, 35, 13161333 (1987)Google Scholar
10. Wehrspohn, R.B., Lin, S.F., Flewitt, A.J., Milne, W.I. and Powell, M.J., J. Appl. Phys., 98, 054505:17 (2005)Google Scholar
11. Andujar, J.L., Bertran, E., Canillas, A., Roch, C. and Morenza, J.L., J. Vac. Sci. Technol. A, 9, 22162221 (1991)Google Scholar
12. French, I., Deane, S., Murley, D., Hewett, J, Gale, I. and Powell, M., Mater. Res. Soc. Symp. Proc., 467, 875880 (1997)Google Scholar
13. Lin, S., Flewitt, A.J., Milne, W.I., Wehrspohn, R.B. and Powell, M.J., Appl. Phys. Lett., 86, 063513–3 (2005)Google Scholar
14. Sugiyama, S., Yang, J. and Guha, S., Appl. Phys. Lett., 70, 378380 (1997)Google Scholar
15. Wei, J.H., Sun, M.S. and Lee, S.C., Appl. Phys. Lett., 71, 14981500 (1997)Google Scholar
16. Wei, J.H. and Lee, S.C., J. Appl. Phys., 85, 543550 (1999)Google Scholar
17. Liu, S.D., Shih, A., Chen, S.D. and Lee, S.C., J. Vac. Sci. Technol. B, 21, 677682 (2003)Google Scholar
18. Stutzmann, M., Jackson, W.B. and Tsai, C.C., Phys. Rev. B, 32, 2347 (1985)Google Scholar
19. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A. and Joannopoulos, J.D., Rev. Mod. Phys., 64, 10451097 (1992)Google Scholar
20. Sidhu, L.S., Kosteski, T., Zukotynski, S. and Kherani, N.P., J. Appl. Phys., 85, 25742578 (1999)Google Scholar
21. Lide, D.R.. Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 2005).Google Scholar
22. Wehrspohn, R.B., Deane, S.C., French, I.D., Gale, I., Hewett, J., Powell, M.J. and Robertson, J., J. Appl. Phys., 87, 144154 (2000)Google Scholar
23. Carlson, D.E. and Magee, C.W., Appl. Phys. Lett., 33, 8183 (1978)Google Scholar
24. Beyer, W., Physica B, 170, 105114 (1991)Google Scholar
25. Street, R., Physica B, 170, 6981 (1991)Google Scholar
26. Yamasaki, S., Umeda, T., Isoya, J., Zhou, J.H. and Tanaka, K., J. Non-Cryst. Solids, 227–230, 332337 (1998)Google Scholar
27. Su, T. and Taylor, P.C., Sol Energ. Mat. Sol. Cells, 78, 269298 (2003)Google Scholar
28. Su, T., Taylor, P.C., Ganguly, G. and Carlson, D.E., Phys. Rev. Lett., 89, 015502–4 (2002)Google Scholar
29. Su, T., Taylor, P.C., Ganguly, G. and Carlson, D.E., J. Non-Cryst. Solids, 338–340, 357360 (2004)Google Scholar