Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T04:07:20.969Z Has data issue: false hasContentIssue false

Links Between the Interface Plane Scheme and Grain Boundary Properties

Published online by Cambridge University Press:  10 February 2011

Valerie Randle*
Affiliation:
Department of Materials Engineering, University of Wales Swansea, Swansea SA2 8PP, UK. [email protected]
Get access

Abstract

This paper describes the current experimental knowledge base concerning the geometry and property relationships at the gram boundary plane. In order to analyse the data the interface-plane scheme is used, and its application is described here. The most important points to emerge from the data are that particular boundary properties - energy, mobility, segregation, precipitation and cracking - correlate with boundary plane types. Recent data illustrating the high occurrence of asymmetrical tilt grain boundaries and importance of low-index grain boundary planes are discussed in more detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wolf, D., J. de Phys. 46, C4197 (1985).Google Scholar
2. Randle, V., The Role of the Coincidence Site Lattice in Grain Boundary Engineering. The Institute of Materials, London, in press.Google Scholar
3. Merkle, K.L. and Wolf, D., Phil. Mag. 65A, 513 (1992).Google Scholar
4. Merkle, K.L., Ultramicros. 37, 130 (1991).Google Scholar
5. Randle, V., The Measurement of Gram Boundary Geometry. The Institute of Physics, Bristol, UK (1993).Google Scholar
6. Randle, V., Mat. Char. 34, 29 (1995).Google Scholar
7. Randle, V. and Dingley, D.J., Scripta Met., 23, 1565 (1989).Google Scholar
8. Randle, V. and Dingley, D.J. in Proc. Euromat '89. edited by Exner, H.E. and Schumacher, V., DGM Oberursel, Germany, 1990, p. 12731278.Google Scholar
9. Randle, V., Mat. Sci. Tech., 7, 985 (1991).Google Scholar
10. Randle, V., Acta Cryst., A50, 588 (1994).Google Scholar
11. Randle, V., J. Mat. Sci., 30, 3983 (1995).Google Scholar
12. Bouchet, D. and Priester, L., Scripta Met., 21, 475 (1987).Google Scholar
13. Omar, R., PhD. Thesis, University of Warwick, UK, (1987).Google Scholar
14. Tweed, C.J., Ralph, B. and Hansen, N., Acta Metall., 17, 1407, (1984).Google Scholar
15. El M'Rabat, B. and Priester, L., Mat. Sci. Eng., 101A, 117, (1988).Google Scholar
16. Randle, V., Scripta Met., 23, 773, (1989).Google Scholar
17. Ogura, T., Watanabe, T., Karashima, S. and Masumoto, T., Acta Metall., 35, 1807, (1987).Google Scholar
18. Bouchet, D. and Priester, L., Scripta Met., 20, 961 (1986).Google Scholar
19. Lin, H. and Pope, D.P., Acta Met. Mat., 41, 553, (1993).Google Scholar
20. Garg, A., Clark, W.A.T. and Hirth, J.P., Phil. Mag. A59, 479, (1989).Google Scholar
21. Andrejeva, A.V., Salnikov, G.I. and Fionova, L.K., Acta Metall. 26, 1331, (1978).Google Scholar
22. Ainsley, M.H., Cocks, G.J. and Miller, D.R., Met. Sci., 13, 20, (1979).Google Scholar
23. Wolf, U., Ernst, F., Muschik, T., Finnis, M.W. and Fischmeister, H.F., Phil. Mag., 66A, 991 (1992).Google Scholar
24. Wolf, D. in Ceramic Microstructures '86. edited by Pask, and Evans, , Plenum Publishing Corp., 1988, p. 177185.Google Scholar
25. Carter, C.B., Acta Metall., 36, 2753, (1988).Google Scholar
26. McKernan, S., Elgat, Z. and Carter, C.B. in Inst. Phys. Conf. Ser. no. 117, Institute of Physics, Bristol, UK, 1991 p. 113116.Google Scholar
27. Merkle, K.L., J. Phys. Chem. Solids, 55, 991 (1994).Google Scholar