Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-01T03:16:32.880Z Has data issue: false hasContentIssue false

Li motion mechanisms in (Li,Na)3xLa2/3-xTiO3 (x = 0.067 and 0.167) series followed by ND, NMR and Impedance spectroscopy.

Published online by Cambridge University Press:  04 April 2011

A. Varez
Affiliation:
Dpto. de Materiales, IAAB, Universidad Carlos III de Madrid, 28911 Leganés. Madrid. Spain.
A. Rivera
Affiliation:
Dpto. de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain.
W. Bucheli
Affiliation:
Instituto Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, ICMM-CSIC, Cantoblanco 28049. Madrid. Spain.
R. Jimenez
Affiliation:
Instituto Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, ICMM-CSIC, Cantoblanco 28049. Madrid. Spain.
J. Sanz
Affiliation:
Instituto Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, ICMM-CSIC, Cantoblanco 28049. Madrid. Spain.
Get access

Abstract

The dependence of Li mobility on structure and composition of quenched Li0.5-xNax La0.5TiO3 (0 ≤ x < 0.5) and slowly cooled Li0.2-xNaxLa0.6TiO3 (0 ≤ x < 0.2) perovskite series, has been investigated by means of Neutron Diffraction (ND), Nuclear Magnetic Resonance (NMR) and Impedance Spectroscopy (IS). The first series displays rhombohedral (√2ap, √2ap, 2√3ap; S.G. R-3c) symmetry and vacancies are randomly distributed on A-sites (disordered phases), while Li0.2-xNaxLa0.6TiO3 series, presents orthorhombic unit cells (2ap, 2ap, 2ap; S.G. Cmmm) and the vacancies are preferentially located in alternating layers along the c-axis (ordered phases). In both cases, Li ions are shifted from A sites to a fourfold coordination at unit cell faces of the single cubic perovskite and octahedral are tilted along the rombohedral axis in Li-rich and along b-axis in Li- poor series. By heating the elimination of the octahedral tilting takes place changing the symmetry from rhombohedral to cubic in Li-rich samples, and from orthorhombic to tetragonal in Li-poor samples; however no changes were detected in La-vacancy distributions. For a particular value of sodium content (x=0.3 for Li0.5-xNaxLa0.5TiO3 and x=0.17 for Li0.2-xNaxLa0.6TiO3), the conductivity drops several orders of magnitude indicating that the amount of vacancies approaches the percolation threshold. In the temperature range 77-500 K, conductivity of Na-doped samples displays departures from the Arrhenius behavior, decreasing activation energy from 0.37 to 0.25 eV in disordered samples and from 0.37 to 0.12 eV in ordered ones. The structural sites occupancy has been investigated by ND, while Li mobility was evaluated through NMR and Impedance spectroscopy. The temperature dependence of thermal BLi factors has been related to the increment of conductivity that precede structural transformations, suggesting that Li motion trigger detected transitions in both series.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Inaguma, Y., Chen, L., Itoh, M., Nakamura, T., Uchida, T., Ikuta, H., Wakihara, M., M. Solid State Comm. 86, (1993), 689.Google Scholar
2. Stramare, S., Thangadurai, V., and Weppner, W., Chem. Mat., 15(21), (2003), 3974 Google Scholar
3. Alonso, J.A., Sanz, J., Santamaría, J., León, C., Várez, A., Fernández-Díaz, M.T., Angew.Chem. Int. Ed. 39 (2000) 619.Google Scholar
4. Sanz, J., Alonso, J.A., Várez, A., Fernández-Díaz, M.T., Dalton Transact. (2002), 1406.Google Scholar
5. Rivera, A., León, C., Santamaría, J., Várez, A., V’yunov, O., Belous, A.G., Alonso, J.A. and Sanz, J., Chem. Mater. 14 (2002) 5148.Google Scholar
6. Paris, M.A., Sanz, J., Leon, C., Santamaría, J., Ibarra, J., Varez, A., Chem. Mater. 2000, 12, 1694.Google Scholar
7. Leon, C., Rivera, A., Varez, A., Sanz, J., Santamaría, J. and Ngai, K.L.. Phys Rev Lett 86 (2001), 1289–1282.Google Scholar
8. Leon, C., Lucia, M.L., Santamaría, J., Paris, M.A., Sanz, J., Varez, A.. Phys. Rev. B, 54, (1996), 184–189Google Scholar
9. Ibarra, J., Várez, A., León, C., Santamaría, J., Torres-Martínez, L.M., Sanz, J., Solid State Ionics 134 (2000) 219.Google Scholar
10. Jiménez, R., Varez, A., Sanz, J., Solid State Ionics, 179 (2008) 495.Google Scholar
11. Jiménez, R., Rivera, A., Varez, A., Sanz, J., Solid State Ionics, 180 (2009) 1362–1371.Google Scholar
12. Rodríguez-Carvajal, J., Phys. B, 192 (1992), 55. (Fullprof Program: Rietveld Pattern Matching Analysis of Powder Patterns, Grenoble, ILL, 1990).Google Scholar
13. Boukamp, A.B., Solid State Ionics 20 (1986) 31. (EQUIVCRT Program).Google Scholar
14. Massiot, D., WINFIT; Bruker-Franzen Analytik GmbH. Bremen, Germany, (1993)Google Scholar
15. Varez, A., Inaguma, Y., Fernandez-Diaz, M.T., Alonso, J.A., Sanz, J., Chem. Mater. 15, (2003), 4637–4641.Google Scholar