Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T05:12:08.377Z Has data issue: false hasContentIssue false

Kinetic Aspects of Island Nucleation Derived from Near Equilibrium Growth Experiments

Published online by Cambridge University Press:  10 February 2011

S. H. Christiansen
Affiliation:
Institut für Werkstoffwissenschaften - Mikrocharakterisierung, Universität Erlangen–Nürnberg, Cauerstr.6, 91058 Erlangen, Germany, [email protected]
M. Becker
Affiliation:
Institut für Werkstoffwissenschaften - Mikrocharakterisierung, Universität Erlangen–Nürnberg, Cauerstr.6, 91058 Erlangen, Germany, [email protected]
H. Wawra
Affiliation:
Institut für Kristallzüchtung, Rudower Chaussee 6, 12489 Berlin, Germany
M. Albrecht
Affiliation:
Institut für Werkstoffwissenschaften - Mikrocharakterisierung, Universität Erlangen–Nürnberg, Cauerstr.6, 91058 Erlangen, Germany, [email protected]
H. P. Strunk
Affiliation:
Institut für Werkstoffwissenschaften - Mikrocharakterisierung, Universität Erlangen–Nürnberg, Cauerstr.6, 91058 Erlangen, Germany, [email protected]
Get access

Abstract

Using liquid phase epitaxy from Bi solution, a by its nature a near equilibrium growth process, we study the kinetics of island formation in the heteroepitaxial system SiGe/Si(001) as dependent on growth temperature, growth rate and composition (which also determines the lattice misfit between layer and substrate). As a main result island formation can be described by classical nucleation theory, moreover, it can be described as any other crystallization process such as solid state crystallization of amorphous silicon or crystallization from a melt, provided that the limited size the islands can grow into is correctly considered. In consequence, after an incubation time period that depends on the growth temperature, islands nucleate and cover the substrate surface with time. The activation energy of island nucleation is 0.84±0.13eV. The coverage with islands depends only on the undercooling and is independent of the cooling rate in case near equilibrium growth conditions are maintained. In these cases the islands have the shape of truncated pyramids with four {111}– side facets and a base width λ that only depends on the misfit f (λ ∝ 1/f2). Deviations from the equilibrium growth stage at high growth rates (thus higher growth driving forces) result in the formation of a higher density of smaller islands with smaller facet angles. At higher growth rates, some kinetic influences begin to appear indicated by the additional appearance of shallower pyramids with four {115}– facet side faces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Asaro, R.J., Tiller, W.A., Metall.Trans. 3, 1789(1972)Google Scholar
[2]Grinfeld, M., Sov.Phys.Dokl. 31, 831(1986)Google Scholar
[3]Srolovitz, D.J., Acta metall. 37, 621(1989)Google Scholar
[4]Cullis, A.G., Robbins, D.J., Pidduck, A.J., Smith, P.W., Mat.Res.Soc.Symp.Proc. 280, 383(1993)Google Scholar
[5]Luryi, S., Suhir, E., Appl.Phys.Lett. 49, 140(1986)Google Scholar
[6]Eaglesham, D.J., Cerullo, M., Phys.Rev.Lett. 64, 1943(1990)Google Scholar
[7]Vanderbilt, D., Wickham, L.K., Mat.Res.Soc.Syrhp.Proc. 202, 555(1991)Google Scholar
[8]Ratsch, C., Zangwill, A., Surf.Sci. 293, 123(1993)Google Scholar
[9]Christiansen, S., Albrecht, M., Hansson, P.O., Bauser, E., Strunk, H.P., Appl.Phys.Lett. 66, 574(1995)Google Scholar
[10]Christiansen, S., Albrecht, M., Michler, J., Strunk, H.P., phys.stat.sol(a) 156, 129(1996)Google Scholar
[11]Christiansen, S., Albrecht, M., Maier, H.J., Strunk, H.P., Appl.Phys.Lett. 64, 3617(1994)Google Scholar
[12]Ross, F.M., Tersoff, J., Tromp, R.M., Phys.Rev.Lett. 80, 984(1998)Google Scholar
[13]Floro, J.A., Chason, E., Twesten, R.D., Hwang, R.Q., Freund, L.B., Phys.Rev.Lett. 79, 3946(1997); J.A. Floro, E. Chason, L.B. Freund, R.D. Twesten, R.Q. Hwang, G.A. Lucadamo, Phys.Rev. B59, 1990 (1999)Google Scholar
[14]Tersoff, J., LeGoues, F.K., Phys.Rev.Lett. 72, 3570(1994)Google Scholar
[15]Kamins, T.I., Williams, R.S., Surf.Science Lett. 405, L580 (1998)Google Scholar
[16]Dorsch, W., Strunk, H.P., Wawra, H., Wagner, G., Groenen, J., Caries, R., Appl.Phys.Lett. 72, 179(1998)Google Scholar
[17]Strunk, H.P., Albrecht, M., Christiansen, S., Dorsch, W., Hbrmann, U., Jahnen, B., Remmele, T., phys.stat.sol. (a) 171, 215(1999)Google Scholar
[18]Hansson, P.O., Albrecht, M., Strunk, H.P., Bauser, E., Werner, J.H., Thin Solid Films 216, 199(1992)Google Scholar
[19]Moll, N., Scheffler, M., Pehlke, E., Phys.Rev. B58,4566 (1998)Google Scholar
[20]Christiansen, S., Albrecht, M., Wawra, H., Strunk, H.P., unpublished result [21] Christiansen, S., Albrecht, M., Becker, M., Strunk, H.P., Wawra, H., Mat.Res.Soc.Symp.Proc. 570, 199(1999); S. Christiansen, H.P. Strunk, H. Wawra, M. Becker, M. Albrecht, Solid State Phenomena 69–70, 93 (1999)Google Scholar
[22]Chen, K.M., Jesson, D.J., Pennycook, S.J., Thundat, T., Warmack, R.J., Mat.Res.Soc.Symp.Proc. 399, 271(1996); D.J. Jesson, K.M. Chen, S.J. Pennycook, T. Thundat, R.J. Warmack, Phys.Rev.Lett. 77, 1330(1996); D.J. Jesson, G. Chen, K.M. Chen, S.J. Pennycook, Phys.Rev.Lett. 80, 5156 (1998)Google Scholar
[23]Becker, R., Theorie der Wirme, Springer Verlag Berlin, Heidelberg, New York 1978Google Scholar
[24]Christian, J.W., The Theory of transformations in metals and alloys, 1st edition, Pergamon Press, New York 1965Google Scholar
[25]Avrami, M., J. Chem. Phys. 7, 1103(1939)Google Scholar
[26]Bauser, E., in: Handbook of Crystal Growth, Vol. 3b Ed. Hurle, D.T.J. (North Holland, Amsterdam 1994)Google Scholar