Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T04:11:20.091Z Has data issue: false hasContentIssue false

Irradiation Response of Graphene Enhanced Gallium Nitride Metal-Semiconductor-Metal Ultraviolet Photodetectors

Published online by Cambridge University Press:  08 May 2015

Heather C. Chiamori
Affiliation:
Aeronautics & Astronautics Dept., Stanford University, Stanford, CA 94305, U.S.A.
Nicholas Broad
Affiliation:
Electrical Engineering Dept., Stanford University, Stanford, CA 94305, U.S.A.
Chetan Angadi
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035, U.S.A.
Ruth Miller
Affiliation:
Aeronautics & Astronautics Dept., Stanford University, Stanford, CA 94305, U.S.A.
Caitlin Chapin
Affiliation:
Mechanical Engineering Dept., Stanford University, Stanford, CA 94305, U.S.A.
Ateeq Suria
Affiliation:
Mechanical Engineering Dept., Stanford University, Stanford, CA 94305, U.S.A.
Sharmila Bhattacharya
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035, U.S.A.
Debbie G. Senesky
Affiliation:
Aeronautics & Astronautics Dept., Stanford University, Stanford, CA 94305, U.S.A. Electrical Engineering Dept., Stanford University, Stanford, CA 94305, U.S.A.
Get access

Abstract

Radiation-tolerant materials, sensors and electronics can enable lightweight space subsystems with reduced packaging requirements and increased operation lifetimes. Such technology can be used within extreme harsh environments related to space exploration, radiation medicine and power generation (combustion and nuclear). Gallium nitride (GaN), a ceramic semiconductor material, is a candidate material due to its stability within high-radiation, high-temperature and chemically corrosive environments. In addition, the wide bandgap of GaN (3.4 eV) can be leveraged for ultraviolet (UV) wavelength photodetection. In metal-semiconductor-metal (MSM) photodetector architectures using Schottky contacts, transparent electrodes (e.g., graphene) can increase sensitivity and improve overall device response. Here we present fabrication and characterization of GaN-based UV photodetectors using graphene electrodes irradiated up to 200 krad total ionizing dose (TID) then tested under UV light and dark conditions. For current-voltage measurements taken at 90, 120 and 200 krad TID, the current-voltage response does not vary significantly. From 90 to 120 krad TID, the responsivity shifts by 2% before dropping off at 200 krad TID. These initial findings suggest that graphene/GaN MSM UV photodetectors can provide robust operation within extreme harsh environments.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pearton, S., Zolper, J., Shul, R., and Ren, F., J. Appl. Phys., 86, 178 (1999).CrossRefGoogle Scholar
Ionascut-Nedelcescu, A., Carlone, C., Houdayer, A., von Bardeleben, H. J., Cantin, J. L., and Raymond, S., IEEE Trans. Nucl. Sci., 49, 27332738 (2002).CrossRefGoogle Scholar
Gaudreau, F., Fournier, P., Carlone, C., Khanna, S. M., Tang, Haipeng, Webb, Jim, and Houdayer, A., IEEE Trans. Nucl. Sci., 49, 27022707 (2002).CrossRefGoogle Scholar
Stutzmann, M., Steinhoff, G., Eickhoff, M., Ambacher, O., Nebel, C., Schalwig, J., Neuberger, R., and Müller, G., Diamond Relat. Mater., 11, 886891 (2002).CrossRefGoogle Scholar
Monemar, B., J. Cryst. Growth, 189, 17 (1998).CrossRefGoogle Scholar
Sellin, P. J. and Vaitkus, J., Nucl. Instrum. Methods Phys. Res., Sect. A, 557, 479489 (2006).Google Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science, 306, 666669 (2004).CrossRefGoogle Scholar
Bonaccorso, F., Sun, Z., Hasan, T., and Ferrari, A. C., Nat. Photon., 4, 611622 (2010).CrossRefGoogle Scholar
Freitag, M., Low, T., Xia, F., and Avouris, P., Nat. Photon., 7, 5359 (2012).CrossRefGoogle Scholar
Tongay, S., Lemaitre, M., Schumann, T., Berke, K., Appleton, B. R., Gila, B., and Hebard, A. F., Appl. Phys. Lett., 99, 102102 (2011).CrossRefGoogle Scholar
Tongay, S., Lemaitre, M., Miao, X., Gila, B., Appleton, B. R., and Hebard, A. F., Phys. Rev. X, 2, 011002 (2012).Google Scholar
Zhong, H., Liu, Z., Xu, G., Fan, Y., Wang, J., Zhang, X., Liu, L., Xu, K., and Yang, H., Appl. Phys. Lett., 100, 122108 (2012).CrossRefGoogle Scholar
Chiamori, H. C., Angadi, C., Suria, A., Shankar, A., Hou, M., Bhattacharya, S., and Senesky, D. G., “Effects of radiation and temperature on gallium nitride (GaN) metalsemiconductor-metal ultraviolet photodetectors,” in Proc. SPIE Sensing Technology + Applications (SPIE MOEMS-MEMS) 2014, Baltimore, MD, 911304, May 2014.Google Scholar
Angadi, C., Chiamori, H. C., Sundaramoorthy, P., Bhattacharya, S., and Senesky, D. G., “Characterization of Wide Bandgap Microsystems Components for Nano, Pico & Femto-Satellite Applications,” in Proc. International Astronautical Congress, 64th 2013 (IAC 2013), Beijing, China, vol. 13, 99919999, Sept. 2013.Google Scholar
Chen, C., Chang, S.-J., Su, Y.-K., Chi, G.-C., Chi, J.-Y., Chang, C., Sheu, J.-K., and Chen, J.-F., IEEE Photon. Technol. Lett., 13, 848850 (2001).CrossRefGoogle Scholar
Averine, S. V., Kuznetzov, P. I., Zhitov, V. A., and Alkeev, N. V., Solid-State Electron., 52, 618624 (2008).CrossRefGoogle Scholar
Carrano, J., Li, T., Eiting, C., Dupuis, R., and Campbell, J., J. Elec. Mater., 28, 325333 (1999).CrossRefGoogle Scholar
Monroy, E., Omnes, F., and Calle, F., Semicond.Sci.Technol., 18, R33 (2003).CrossRefGoogle Scholar
Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., and Ruoff, R. S., Science, 324, 13121314 (2009).CrossRefGoogle Scholar
Bae, S., Kim, H., Lee, Y., Xu, X., Park, J. S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R., and Song, Y. I., Nat. Nano., 5, 574578 (2010).CrossRefGoogle Scholar
Liang, X., Sperling, B. A., Calizo, I., Cheng, G., Hacker, C. A., Zhang, Q., Obeng, Y., Yan, K., Peng, H., Li, Q., Zhu, X., Yuan, H., Hight Walker, A. R., Liu, Z., Peng, L.-M., and Richter, C. A., ACS Nano, 5, 91449153 (2011).CrossRefGoogle Scholar
Blake, P., Hill, E., Castro Neto, A., Novoselov, K., Jiang, D., Yang, R., Booth, T., and Geim, A., Appl. Phys. Lett., 91, 063124 (2007).CrossRefGoogle Scholar
Sze, S. and Ng, K. K., “Photodetectors and Solar Cells,” in Physics of Semiconductor Devices, 3rd ed., no. 13, Hoboken, NJ: Wiley-interscience, 2007.Google Scholar
Schwank, J. R., Shaneyfelt, M. R., and Dodd, P. E., Sandia National Laboratories, Albuquerque, SAND-2008-6851P, 2008.Google Scholar
Oldham, T. R. and McLean, F. B., IEEE Trans. Nucl. Sci., 50, 483499 (2003).CrossRefGoogle Scholar
Hughes, H. L. and Benedetto, J. M., IEEE Trans. Nucl. Sci., 50, 500521 (2003).CrossRefGoogle Scholar
Lien, W. C., Tsai, D. S., Lien, D.-H., Senesky, D. G., He, J. H., and Pisano, A. P., IEEE Electron Device Lett., 33, 15861588 (2012).CrossRefGoogle Scholar
Jorio, A., Lucchese, M. M., Stavale, F., and Achete, C. A., Phys. Stat. Sol. B, 246, 26892692 (2009).CrossRefGoogle Scholar
Ferrari, A. C., Solid State Communications, 143, 4757 (2007).CrossRefGoogle Scholar
Dresselhaus, M. S., Jorio, A., and Saito, R., Annu. Rev. Condens. Matter Phys., 1, 89108 (2010).CrossRefGoogle Scholar
Lien, W. C., Tsai, D. S., Chiu, S. H., Senesky, D., Maboudian, R., Pisano, A., and He, J. H., “Nanocrystalline SiC metal-semiconductor-metal photodetector with ZnO nanorod arrays for high-temperature applications,” in Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International, 18751878, June 2011.CrossRefGoogle Scholar