Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-01T03:45:22.549Z Has data issue: false hasContentIssue false

Investigation of Cation Disorder In ‘C’ Axis Ybco 123 Thin Films Using Raman Microscopy

Published online by Cambridge University Press:  15 February 2011

L. F. Cohen
Affiliation:
Blackett Laboratory, Imperial College, London SW7, UK, [email protected].
Y. B. Li
Affiliation:
Blackett Laboratory, Imperial College, London SW7, UK, [email protected].
G. Gibson
Affiliation:
Department of Materials Science, Imperial College, London SW7, UK, [email protected]
J. MacManus-Driscoll
Affiliation:
Department of Materials Science, Imperial College, London SW7, UK, [email protected]
Get access

Abstract

Two 123 thin films grown by e-beam evaporation have been studied using Raman microscopy. The films were grown under different conditions of temperature and oxygen partial pressure and show different levels of cation disorder as determined from the ‘c’ axis lattice parameter in combination with x-ray data. The oxygen stoichiometry in each film was changed by controlled anneals using a coulometric titration apparatus. As a result we report on the sensitivity of the 500cm−1 and 585cm−1 Raman peak to the oxygen stoichiometry and how the intensity and position of these peaks can be used to detect or confirm the presence of a small amount of cation disorder.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chew, N. G. et al, Conference Proceedings ASC Boston 1994.Google Scholar
2 MacManus-Driscoll, J. L., Alonso, J.A., Wang, P. C., Geballe, T. H., Bravman, J. C., Physica C 232 288308 (1994).Google Scholar
3 Macfarlane, R.M., Rosen, H.J., Engler, E.M., Jacowitz, R.D. and Lee, V.Y., Phys. Rev. B, 38 284 (1988).Google Scholar
4 Faulques, E., Mahot, P., Spieser, M., Nguyen, T.P., Garz, G., C. Gonzalez and Molinié, Phys. Rev B 50 1209 (1994).Google Scholar
5 Beloussov, M.V., Davydov, V. Yu and Sherman, A B, Superconduc. Sci. Technol. 6 819 (1993); C. Thompson, K Wegerer, H. U. Habermeier and M. Cardona, Solid State Commun. 83 199 (1992).Google Scholar
6 Mascaren, A., Katayama, H., Geller, S., Pankove, J.I. and Deb, S. K., Mat. Res. Soc. Proc. 99 415 (1988).Google Scholar
7 Chew, N. G., Goodyear, S. W., Edwards, J.A., Satchell, J.S., Blenkinsop, S. E. and Humhreys, R- G., Appl. Phys. Lett 57 (19) 2016 (1990).Google Scholar
8 MacManus-Driscoll, J. L., Bravman, J. C., Savoy, R. J., Gorman, G. and Beyer, R. B., J. Am. Ceram. Soc 77(9) 2305–13 (1994).Google Scholar
9 Specht, E.D., Sparkes, C. J., Dhere, A. G., Brynestad, J., Carin, O.B., Kroeger, D. M. and Oye, H. A., Phys. Rev. B 37 7426 (1988).Google Scholar
10 Li, Y. B., Shelly, C., Cohen, L. F., Caplin, A. D., MacManus-Driscoll, J. L., Kula, W. and Stradling, R-A., preprint.Google Scholar