Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T09:26:27.619Z Has data issue: false hasContentIssue false

Intercalation in 3D-Skeleton Structures : Ionic and Electronic Features

Published online by Cambridge University Press:  28 February 2011

Paul Hagenmuller
Affiliation:
Laboratoire de Chimie du Solide du CNRS, Université de Bordeaux I, 351 cours de la Libération, 33405 TALENCE Cedex, France
Claude Delmas
Affiliation:
Laboratoire de Chimie du Solide du CNRS, Université de Bordeaux I, 351 cours de la Libération, 33405 TALENCE Cedex, France
Get access

Abstract

The voltage of an electrochemical cell, i.e. the difference between the chemical potentials of the two electrodes, may play the role of a sensor which allows to display the structural modifications and the physical properties. The electrochemical processes involved in an alkali metal (A) intercalation electrode emphasize the influence of the ionic and/or electronic features. The A+-lattice and A+-A+ interactions as well as electronic band-filling may lead to phase transitions or even limit the intercalation reaction.

The shape of the cell voltage vs. intercalation rate curve depends on the number of vacant sites available for intercalation, the number and the oxidation state of the reducible cations, the band structure of the material and the covalency of the framework.

Alkali ion intercalation in 3D-structures related to perovskite (Ln NbO3), hexagonal tungsten bronze (LiW3O9F) and Nasicon-type (AM2 (PO4)3) is discussed from that point of view.

In LnNBO3 (Ln = La, Nd) (i.e. ▭ ½Ln ▭, NbO3) L1+-intercalation in various sites is related to the rare earth size.

Two extra lithium atoms can be introduced into LiW3O9F in which four sites are available, but only one out of two is occupied in order to reduce the electrostatic interactions. Moreover the change in the discharge curves can be associated to the modifications with intercalation rate of the Li+-lattice interactions.

Within the Nasicon derived structures of ATi2 (PO4)3 and Fe2 (MoO4)3 the intercalation process is limited by the lowest stable oxidation state of titanium or iron. In both systems the strong electronic localization leads to formation of large two phase-domains.

The relevance of using 3D-intercalation electrodes in electrochemical power batteries will be discussed as far factors such as electrical behavior or absence of significant unit cell modifications of the positive electrodes during the intercalation process are essential for many cycle utilizations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Delmas, C., Chemical Physics of Intercalation, Legrand, A.P. and Flandrois, S. ed., Nato ASI series (1987) 209.Google Scholar
2. Cox, D.E., Cava, R.J., Whan, D.B. Mc and Murphy, D.W., J. Phys. Chem. Solids, 43 (1982) 657.Google Scholar
3. Goodenough, J.B., Manthiram, A. and James, A.C., Mat. Res. Soc. Symp. Proc., 135 (1989) 391.CrossRefGoogle Scholar
4. Mizushima, K., Jones, P.C., Wiseman, P.J. and Goodenough, J.B., Mat. Res. Bull., 15 (1980) 783.CrossRefGoogle Scholar
5. Nohma, T., Saito, T., Furakawa, N. and Ikeda, H., J. Power Sources, 26 (1989) 389.CrossRefGoogle Scholar
6. Cheng, K.H. and Whittingham, M.S., Solid State Ionics, 1 (1980) 151.Google Scholar
7. Wiseman, P.J. and Dickens, P.G., J. Solid State Chem., 17 (1976) 91.Google Scholar
8. Murphy, D.W., Greenblatt, M., Cava, R.J. and Zahurak, S.M., Solid State Ionics, 5 (1981) 327.Google Scholar
9. Cava, R.J., Santoro, A., Murphy, D.W., Zahurak, S.M. and Roth, R.S., J. Solid State Chem., 50 (1983) 121.Google Scholar
10. Raistrick, I.D. and Huggins, R.A., Mat. Res. Bull., 18 (1983) 337.Google Scholar
11. Cheng, K.H., Jacobson, A.J. and Whittingham, M.S., Solid State Ionics, 5 (1981) 355.CrossRefGoogle Scholar
12. Gerand, B., Nowogrocki, G., Guenot, J. and Figlarz, M., J. Solid State Chem., 29 (1979) 429.Google Scholar
13. Iyer, P.N. and Smith, A.J., Acta Crystallogr., 23 (1967) 740.Google Scholar
14. Nadiri, A., Flem, G. Le and Delmas, C., J. Solid State Chem., 73 (1988) 338.CrossRefGoogle Scholar
15. Cava, R.J., Santoro, A., Murphy, D.W., Zahurak, S. and Roth, R.S., Solid State Ionics, 5 (1981) 323.Google Scholar
16. Gerand, B., Ph. D. thesis- Universtiy of Picardie - France (1984)Google Scholar
17. Moutou, J.M., Vlasse, M., Cervera-Marzal, M., Chaminade, J.P. and Pouchard, M., J. Solid State Chem., 51 (1984), 190.Google Scholar
18. Chang, S.H., Delmas, C., Chaminade, J.P. and Hagenmuller, P., Solid State Ionics (in press).Google Scholar
19. Honders, A., Kinderen, J.M. der, Heeren, A.H. Von, Wit, J.H.W. de and Broers, G.H.J., Solid State Ionics, 15 (1985) 173.Google Scholar
20. Honders, A., Young, E.W.A., Hintzen, A.J.H., Wit, J.H.W. de and Broers, G.H.J., Solid State Ionics, 15 (1985) 265.CrossRefGoogle Scholar
21. Delmas, C., Chang, S.H., Menetrier, M., Suh, K.S., J. Senegas and Chaminade, J.P., Solid State Ionics (in press)Google Scholar
22. Goodenough, J.B., Hong, H.Y-P and Kafalas, J.A., Mat. Res. Bull., 11 (1976) 203.Google Scholar
23. Delmas, C., Olazcuaga, R., Cherkaoui, F., Brochu, R., Flem, G. Le and Hagenmuller, P., Mat. Res. Bull., 16 (1981) 285.Google Scholar
24. Delmas, C., Viala, J.C., Olazcuaga, R., Flem, G. Le, Cherkaoui, F., Brochu, R. and Hagenmuller, P., Solid State Ionics, 3/4 (1981) 209.Google Scholar
25. Cherkaoui, F., Villeneuve, G., Delmas, C. and Hagenmuller, P., J. Solid State Chem., 65 (1986) 293.CrossRefGoogle Scholar
26. Delmas, C., Nadiri, A. and Soubeyroux, J.L., Solid State Ionics, 28/30 (1988) 432.Google Scholar
27. Manthiram, A. and Goodenough, J.B., J. Power Sources, 26 (1989) 403.Google Scholar
28. Nadiri, A., Delmas, C., Salmon, R. and Hagenmuller, P., Rev. Chimie Minérale (special issue Chimie Douce), 21 (1984) 537.Google Scholar
29. Nadiri, A. et Delmas, C., C.R. Acad. Se., C304 (1987) 415.Google Scholar
30. Delmas, C., Cherkaoui, F., Nadiri, A. and Hagenmuller, P., Mat. Res. Bull., 22 (1987) 631.Google Scholar
31. Manthiram, A. and Goodenough, J.B., J. Solid State Chem., 71 (1987) 349.CrossRefGoogle Scholar
32. Delmas, C., Soubeyroux, J.L. and Nadiri, A., Eur. J. Solid State Chem. (submitted).Google Scholar
33. Hagenmuller, P., Intercalation compounds : covalent and ionic approach, Proc. 7th International Conference on Solid State Ionics, Hakone, Nov. 1989, Plenary lecture.Google Scholar