Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T15:45:17.754Z Has data issue: false hasContentIssue false

Indentation Crystallization and Phase Transformation of Amorphous Germanium

Published online by Cambridge University Press:  26 February 2011

G. Patriarche
Affiliation:
[email protected], CNRS, LPN UPR20, France
E. Le Bourhis
Affiliation:
[email protected], U. Poitiers, LMP CNRS UMR 6630, France
M.M. Khayyat
Affiliation:
[email protected], U. Cambridge, Cavendish Laboratory, United Kingdom
M.M. Chaudhri
Affiliation:
[email protected], U. Cambridge, Cavendish Laboratory, United Kingdom
Get access

Abstract

It has been known for about 15 years that when a Vickers indenter is loaded on to a crystalline semiconductor, such as silicon, a semiconductor to metallic phase transition occurs during indenter loading and on removal of the indenter the material within the residual indentation becomes amorphous. Here we report on a completely opposite effect: when a Berkovich or Vickers diamond indenter is loaded on to a submicrometre thick film of amorphous germanium, it densifies, crystallizes and undergoes structural phase transitions. These observations are based on transmission electron microscopy and Raman scattering investigations. It has also been shown that the indentation-induced crystallization and phase transitions occur close to the indenter tip, where the plastic strains are the highest.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Minomura, S. and Drickamer, H. G., J. Phys. Chem. Solids 23, 451 (1962).Google Scholar
2 Jamieson, J. C., Science 139, 762 (1963).Google Scholar
3 Bundy, F. P. and Kasper, J. S., Science 139, 340 (1963).Google Scholar
4 Kasper, J. S. and Richards, S. H., Acta. Cryst. 17, 752 (1964).Google Scholar
5 Clarke, D. R., Kroll, M. C., Kirchner, P. D., Cook, R. F. and Hockey, B. J., Phys. Rev. Lett. 21, 2156 (1988).Google Scholar
6 Pharr, G. M., Oliver, W. C., Cook, R. F., Kirchner, P. D., Kroll, M. C., Dinger, T. R. and Clarke, D. R., J. Mater. Res. 7, 961 (2000).Google Scholar
7 Saka, H., Shimatani, A., suganuma, M., and Suprijadi, , Phil. Mag. A 82, 1971 (2002).Google Scholar
8 Gogotsi, Y. G., Domnich, V., Dub, S. N., Kailer, A. and Nickel, K. G., J. Mater. Res. 15, 871 (2000).Google Scholar
9 Bradby, J. E., Williams, J. S., Wong-Leung, J., Swain, M. V. and Munroe, D., Appl. Phys. Lett. 80, 2651 (2002).Google Scholar
10 Khayyat, M. M., Banini, G. K., Hasko, D. G. and Chaudhri, M. M., J. Phys. D: Appl. Phys. 36, 1300 (2003).Google Scholar
11 Patriarche, G., Le Bourhis, E., Khayyat, M. M., Chaudhri, M. M., J. Appl. Phys. 96, 1464 (2004).Google Scholar
12 Haberl, B., Bradby, J.E., Swain, M.V., Williams, J.S., Munroe, P., Appl. Phys. Lett. 85, 5559 (2004)Google Scholar
13 Patriarche, G., Le Bourhis, E., Khayyat, M. M., Chaudhri, M. M., Mater. Techn. in press.Google Scholar
14 Olijnyk, H. and Jephcoat, A. P., Phys. Stat. Sol. (b) 211, 413 (1999).Google Scholar
15 Largeau, L., private communication (2005)Google Scholar
16 Chaudhri, M. M., Acta. Mater. 46, 3047 (1998).Google Scholar
17 Largeau, L., Patriarche, G., Le Bourhis, E., J. Mater. Sci. Lett. 21, 401 (2002).Google Scholar
18 Shimomura, O., Minomura, S., Sakai, N., Asaumi, K., Tamura, K., Fukushima, J., Endo, H., Phil. Mag. 29, 547 (1974).Google Scholar
19 Gilman, J. J., Czech. J. Phys. 45, 913 (1995).Google Scholar
20 Kim, J.J., Choi, Y., Suresh, S. and Argon, A. S., Science 295, 654 (2002).Google Scholar