Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T20:22:51.148Z Has data issue: false hasContentIssue false

In Situ Sintering of Waste Forms in an Underground Disposal Environment

Published online by Cambridge University Press:  01 February 2011

Michael I. Ojovan
Affiliation:
Immobilisation Science Laboratory, Department of Engineering Materials, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
Fergus G. F. Gibb
Affiliation:
Immobilisation Science Laboratory, Department of Engineering Materials, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
William E. Lee
Affiliation:
Immobilisation Science Laboratory, Department of Engineering Materials, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
Get access

Abstract

A waste management scheme is described, which aims to utilise the ambient pressure of a disposal environment, its radiation shielding and extended time of storage to ensure reliable immobilisation of radioactive waste in a glass composite or polycrystalline matrix form. The conditions required for natural sintering of the waste form in the repository are assessed for viscous flow and grain boundary diffusion mechanisms. In situ sintering of materials in the repository creates geochemically stable materials in equilibrium with the disposal environment ensuring a higher degree of safety compared to existing approaches.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Laverov, N.P., Velichkin, V.I., Omlianenko, B.I., Petrov, V.A., Tarasov, N.N. Geoecology, Engineering geology, Hydrogeology, Geocryology, 1, 3 (2000).Google Scholar
2. Gibb, F.G.F.. Journal of Geological Society. London. 157, 27 – 36 (2000).Google Scholar
3. Sobolev, I.A., Timofeev, E.M., Ojovan, M.I., Shiryaev, V.V., Arustamov, A.E., Kachalov, M.B.. Mat. Res. Soc. Symp. Proc, 506, 10031008 (1998).Google Scholar
4. Gonzales, A.J. IAEA Bulletin, 41, 315 (1999).Google Scholar
5. ANS-5.1. American Nuclear Society, La Grange Park, IL (Oct., 1971).Google Scholar
6. Cohen, B.L. Rev. Mod. Phys., 49, 120 (1977).Google Scholar
7. Gong, W.L., Litze, W., Ewing, R.C.. J. Nucl. Mater., 278, 7384 (2000).Google Scholar
8. Digeos, A.A., Valdez, J.A., Sickafus, K.E., Atiq, S., Grimes, R.W. and Boccaccini, A.R.. J. Mat. Sci., 38, 15971604 (2003).Google Scholar
9. Scherer, G.W.. Glass formation and relaxation. In: Glasses and Amorphous Materials. Edited by Zarzycki, J., Cambridge, 119174 (1991).Google Scholar
10. Aloy, A.S., Kovarskaya, E.N., Koltsova, T.I., Samoylov, S.E., Rovhyi, S.I., Medvedev, G.M., Jardine, L.. Proc. ICEM'O1 Int. Conf., Brugge, Belgium, ASME 104.pdf (2001).Google Scholar
11. Burakov, B.E., Anderson, E.B., Zamoryanskaya, M.V., Yagovkina, M.A, Nikolaeva, E.V.. Mat. Res. Soc. Symp. Proc, 713, JJ11.12.14 (2002).Google Scholar
12. Burakov, E.B and Anderson, E.B.. Proc. ICEM'2001, Bruges, Belgium, ASME 39–121.pdf (2001).Google Scholar
13. Sobolev, I.A., Myasoedov, B.F., Stefanovskii, S.V., Yudintsev, S.V. and Kulyako, Yu.M.. Radiochemistry, 43, 124 – 130 (2001).Google Scholar
14. Sweeney, S.M. and Mayo, M.J.. J. Mater. Res., 17, 8997 (2002).Google Scholar