Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-12-01T00:28:17.001Z Has data issue: false hasContentIssue false

HRTEM Study of the Role of Nanoparticles in ODS Ferritic Steel under Dual-Ion Irradiation

Published online by Cambridge University Press:  03 October 2011

Luke Hsiung*
Affiliation:
Lawrence Livermore National Laboratory Physical and Life Sciences Directorate Livermore, CA94551, U.S.A.
Scott Tumey
Affiliation:
Lawrence Livermore National Laboratory Physical and Life Sciences Directorate Livermore, CA94551, U.S.A.
Michael Fluss
Affiliation:
Lawrence Livermore National Laboratory Physical and Life Sciences Directorate Livermore, CA94551, U.S.A.
Yves Serruys
Affiliation:
Service de Recherches de Métallurgie Physique (CEA) Gif-sur-Yvette 91191, France
Francois Willaime
Affiliation:
Service de Recherches de Métallurgie Physique (CEA) Gif-sur-Yvette 91191, France
*
*Corresponding author. Tel.: +1-925 424 3125; fax: +1-925 424 3815 E-mail address: [email protected].
Get access

Abstract

Structures of nanoparticles and their role in dual-ion irradiated Fe-16Cr-4.5Al-0.3Ti-2W-0.37Y2O3 (K3) ODS ferritic steel produced by mechanical alloying (MA) were studied using high-resolution transmission electron microscopy (HRTEM) techniques. The observation of Y4Al2O9 complex-oxide nanoparticles in the ODS steel imply that decomposition of Y2O3 in association with internal oxidation of Al occurred during mechanical alloying. HRTEM observations of crystalline and partially crystalline nanoparticles larger than ~2 nm and amorphous cluster-domains smaller than ~2 nm provide an insight into the formation mechanism of nanoparticles/clusters in MA/ODS steels, which we believe involves solid-state amorphization and re-crystallization. The role of nanoparticles/clusters in suppressing radiation-induced swelling is revealed through TEM examinations of cavity distributions in (Fe + He) dual-ion irradiated K3-ODS steel. HRTEM observations of helium-filled cavities (helium bubbles) preferably trapped at nanoparticle/clusters in dual-ion irradiated K3-ODS are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ehrlich, K., Phil. Trans. R. Soc. Lond. A 357 (1999) 595.Google Scholar
2. Ukai, S., Fujiwara, M., J. Nucl. Mater. 307-311 (2002) 749.Google Scholar
3. Kohyama, A., Seki, M., Abe, K., Muroga, T., Matsui, H., Jitukawa, S., Matsuda, S., J. Nucl. Mater. 283-287 (2000) 20.Google Scholar
4. Kim, I.–S, Hunn, J.D., Hashimoto, N., Larson, D.L., Maziasz, P.J., Miyahara, K., Lee, E.H., J. Nucl. Mater. 280 (2000) 264.Google Scholar
5. Tanaka, T., Oka, K., Ohnuki, S., Yamashita, S., Suda, T., Watanabe, S., Wakai, E., J. Nucl. Mater. 329-333 (2004) 294.Google Scholar
6. Bloom, E.E., J. Nucl. Mater. 85-86 (1979) 795.Google Scholar
7. Yutani, K., Kishimoto, H., Kasada, R., Kimura, A., J. Nucl. Mater. 367-370 (2007) 423.Google Scholar
8. Uki, S., Nishida, T., Okada, H., Okuda, T., Fujiwara, M., Asabe, K., J. Nucl. Sci. Technol. 34(3) (1997) 256.Google Scholar
9. Uki, S., Nishida, T., Okuda, T., Yoshitake, T., J. Nucl. Sci. Technol. 35(4) (1998) 294.Google Scholar
10. Boudias, C., Monceau, D., The crystallographic software for research and teaching, Senlis, France (1989-1998).Google Scholar
11. Nørlund Christensen, A. and Hazell, R.G., Acta Chemica Scandinavica 45 (1991) 226.Google Scholar
12. Ching, W.Y., Xu, Y.N., Physical Review B 59(20) (1999) 12815.Google Scholar
13. de Castro, V., Leguey, T., Monge, M.A., Munoz, A., Pareja, R., Amador, D.R., Torralba, J.M., Victoria, M., J. Nucl. Mater. 322 (2003) 228.Google Scholar
14. Okuda, T., Fujiwara, M., J. Mater. Sci. Lett. 14 (1995) 1600.Google Scholar
15. Kimura, Y., Takaki, S., Suejima, S., Uemori, R., Tamehiro, H., ISIJ International, 39(2) (1999) 176.Google Scholar
16. Sakasegawa, H., Tamura, M., Ohtsuka, S., Ukai, S., Tanigawa, H., Kohyama, A., Fujiwara, M., J. Alloys & Compounds 452 (2008) 2.Google Scholar
17. Alinger, M.J., Odette, G.R., Hoelzer, D.T., Acta Materialia 57 (2009) 393.Google Scholar
18. Darken, L.S., Gurry, R.W., Physical Chemistry of Metals, McGraw-Hill, New York 1953.Google Scholar
19. Wen, L., Sun, X., Xiu, Z., Chen, S., Tsai, C-T, J. Europ. Ceram. Soc. 24 (2004) 2681.Google Scholar
20. Marquis, E.A., Appl. Phys. Lett. 93 (2008) 181904.Google Scholar
21. Klimiankou, M., Lindau, R., Möslang, A., J. Nucl. Mater. 386-388 (2009) 553.Google Scholar
22. Hsiung, L.L., Fluss, M.J., Kimura, A., Mater. Lett. 64 (2010) 1782.Google Scholar
23. Koyano, T., Takizawa, T., Fukunaga, T., Mizutani, U., Kamizuru, S., Kita, E., Tasaki, A., J. Appl. Phys. 73 (1993) 429.Google Scholar
24. Suryanarayana, C., Progress in Materials Science 46 (2001) 1.Google Scholar
25. Mansur, L.K., Coghlan, W.A., J. Nucl. Mater. 119 (1983) 1.Google Scholar
26. Mansur, L.K., Lee, E.H., Maziasz, P.J., Rowcliffe, A.P., J. of Nucl. Mater. 141-143 (1986) 633.Google Scholar
27. Horton, L.L., Mansur, L.K., ASTM STP 870 (1985) 344.Google Scholar
28. Mansur, L.K., Lee, E.H., J. of Nucl. Mater. 179-181 (1991) 105.Google Scholar
29. Ehrlich, K., Fusion Eng. Des. 56-57 (2001) 71.Google Scholar
30. Yamamoto, T., Odette, G.R., Miao, P., Edwards, D.J., Kurtz, R.J., J. of Nucl. Mater., 386-388 (2009) 338.Google Scholar
31. Ruhle, M., Wilkens, M., Cryst. Lattice Defects 6 (1975) 129.Google Scholar