Hostname: page-component-788cddb947-xdx58 Total loading time: 0 Render date: 2024-10-14T16:59:05.442Z Has data issue: false hasContentIssue false

A High Resolution TEM Study of In-Situ Surface Oxidation of Indium III–V Semiconductors

Published online by Cambridge University Press:  28 February 2011

David J. Smith
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, AZ 85287.
Amanda K. Petford-Long
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, AZ 85287.
Get access

Abstract

Electron irradiation of InP, InAs and InSb crystals within the electron microscope causes the crystallization of nearsurface amorphous material and the oxidation of bulk crystalline material. The material most commonly found in both regions is cubic In2O3, although small regions (< 5 nm) of the corresponding In-c 6mpound semiconductors are sometimes recrystallized. The observations are consistent with desorption of the anion species due to electron-beam-stimulated processes, with subsequent oxidation of residual In metal.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Scott, C.G. and Reed, C.E., in Surface Science of Phosphorus & Semi-conductors edited by Scott, C.G. and Reed, C.E. (Academic Press, London, 1975), p. 411.Google Scholar
2. Schwartz, G.P., Griffiths, J.E. and Gualtieri, G.J., Thin Sol. Films 94, 213 (1982).CrossRefGoogle Scholar
3. Fath-ipour, M., Boyer, P.K., Collins, G.J. and Wilmsen, C.W., J. Appl. Phys. 57, 637 (1985).CrossRefGoogle Scholar
4. Olivier, J., Faulconnier, P. and Poirier, R., J. Appl. Phys. 51, 4990, (1980).CrossRefGoogle Scholar
5. Williams, J.O., Crawford, E.S., Brown, G.T., and Cockayne, B., J. Mat. Sci. Lett. 1, 499 (1982).CrossRefGoogle Scholar
6. Petford-Long, A.K. and Smith, D.J., Phil. Mag., A54, 837 (1986).CrossRefGoogle Scholar
7. Self, P.G., Bhadeshia, H.K.D.H., and Stobbs, W.M., Ultramicroscopy 6, 29 (1981).CrossRefGoogle Scholar
8. Smirnova, T.P., Golubenko, A.N., Zacharchuk, N.F., Belyi, N.F., Kokovin, G.A., and Valisheva, N.A., Thin Sol. Films 76, 11 (1981).CrossRefGoogle Scholar
9. Newcomb, S.B., Stobbs, W.M. and Metcalfe, E., Phil. Trans. Roy. Soc., A319, 194218 (1986).Google Scholar
10. McMahon, R.A. and Ahmed, H., Electronic Letts. 15, 45 (1979).CrossRefGoogle Scholar
11. Vavilov, V.S., Kiv, A.E., and Niyazova, O.R., phys. stat. sol. (a) 32, 11 (1975).CrossRefGoogle Scholar
12. Menzel, D. and Gomer, R., J. Chem. Phys. 40, 1164 (1964).CrossRefGoogle Scholar
13. Redhead, P.A., Can. J. Phys. 42, 886 (1964).CrossRefGoogle Scholar
14. Smith, D.J. and Ehrlich, D.J., J. Mats. Res. 1, 560 (1986).CrossRefGoogle Scholar