Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T07:31:02.461Z Has data issue: false hasContentIssue false

Hierarchical Metallic and Ceramic Nanostructures Produced via a Hybrid Approach Combining Laser Interference Ablation and Block Co-Polymer Phase Separation

Published online by Cambridge University Press:  22 May 2012

Taiwo R. Alabi
Affiliation:
Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405 U.S.A.
Dajun Yuan
Affiliation:
Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405 U.S.A.
Suman Das
Affiliation:
Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405 U.S.A.
Get access

Abstract

We report on the formation of hierarchical nanostructures of Au, Pt, Fe2O3 and PdO2 using a hybrid technique combining laser interference patterning (LIP) and block copolymer phase separation (BCPS). By varying the loading time of the block copolymer with metallic salts and the laser interference technique, different types of hierarchical square, triangular, linear and circular arrays can be formed. Such a robust method can be applied to other metallic and ceramic materials and has potential for use in the large-scale production of nano-catalysts, photonics, optoelectronics, MEMS devices and bio-sensors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kelly, K. L., Coronado, E., Zhao, L. L. and Schatz, G. C., The Journal of Physical Chemistry B 107(3), 668677 (2002).Google Scholar
2. Daniel, M.-C. and Astruc, D., Chemical Reviews 104(1), 293346 (2003).Google Scholar
3. Jiang, Q., Zhang, S. and Zhao, M., Materials Chemistry and Physics 82(1), 225227 (2003).Google Scholar
4. Lu, A.-H., Salabas, E. L. and Schüth, F., Angewandte Chemie International Edition 46(8), 12221244 (2007).Google Scholar
5. Luo, X., Morrin, A., Killard, A. J. and Smyth, M. R., Electroanalysis 18(4), 319326 (2006).Google Scholar
6. Gates, B. D., Xu, Q., Stewart, M., Ryan, D., Willson, C. G. and Whitesides, G. M., Chemical Reviews 105(4), 11711196 (2005).Google Scholar
7. Piner, R. D., Zhu, J., Xu, F., Hong, S. and Mirkin, C. A., Science 283 (5402), 661663 (1999).Google Scholar
8. Moon, J. H., Ford, J. and Yang, S., Polymers for Advanced Technologies 17(2), 8393 (2006).Google Scholar
9. Roman, G. and, et al. ., Nanotechnology 14(10), 1153 (2003).Google Scholar
10. Baek, I., J. Vac. Sci. Technol. B 23(6), 3120 (2005).Google Scholar