No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
A thin two-component epilayer grown on a solid surface may separate into distinct phases. Sometimes the phases select sizes about 10 nm, and order into an array of stripes or disks. However, the pattern types are limited and the location of the features is not controlled. This paper develops a dynamic model to simulate guided self-assembly. In particular, we look at the effect of surface chemistry on the pattern formation process. The simulations suggest that diverse patterns may be produced by tuning the surface chemistry of a substrate. In addition, the self-assembled features may be anchored at specific locations.