Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T11:48:30.020Z Has data issue: false hasContentIssue false

Generation of hydrogen peroxide on a pyridine-like nitrogen-nickel doped graphene surface

Published online by Cambridge University Press:  30 July 2012

E. Rangel
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, C.P. 04510, México, D. F., México. Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, C.P. 01000, México, D. F. México.
L. F. Magana
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, C.P. 01000, México, D. F. México.
L. E. Sansores
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, C.P. 04510, México, D. F., México.
G.J. Vázquez
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, C.P. 01000, México, D. F. México.
Get access

Abstract

Density functional theory and molecular dynamics were used to study the generation of hydrogen peroxide around a nickel atom anchored on a pyridine-like nitrogen-doped graphene (PNG) layer. First, we found that two hydrogen molecules are adsorbed around the nickel atom, with adsorption energy 0.95 eV/molecule. Then we studied the interaction of oxygen molecules with this system at atmospheric pressure and 300 K. It is found that two hydrogen peroxide molecules are formed. However, at 700 K, one hydrogen peroxide molecule, and one water molecule are desorbed. One oxygen atom stays bound to the nickel atom.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hart, W. H., Hsieh, S. J., Am. Inst. Chem. Eng. Symp. 319, 7376 (1998).Google Scholar
Ljunggren, S., J. Pulp Paper Sci. 12 J5455 (1986).Google Scholar
Walker, C. W., McDonough, J.T., Dinus, J.R., Eriksson, K.E., Am Inst Chem Eng Symp 94, 5760 (1998).Google Scholar
Hage, R., Lienke, A., Angew. Chem. Int. Ed. 45, 206222 (2006).CrossRefGoogle Scholar
Chinta, S., Lunsford, J. H., J. Catal. 225, 249255 (2004).CrossRefGoogle Scholar
Parr, R. G., Yang, W.. Density-functional theory of atoms and molecules. Oxford. Oxford (University Press, 1989) pp. 7677.Google Scholar
Marx, D., Hutte, J.. Modern methods and algorithms of quantum chemistry. In: Grotendorst, J, Editor.(NIC Series,Vol.1, Jülich;John von Neumann Institute for Computing;2000) pp.301449.Google Scholar
Giannozzi, P., De Angelis, F., Ca, R. J.. Chem. Phys 120, 59035915 (2004).Google Scholar
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., et al. . J. Phys Condens Matter 21, 395502–19 (2009).CrossRefGoogle Scholar
Perdew, J. P., Zunger, A.. Phys Rev B 23, 5048–79 (1981).CrossRefGoogle Scholar
Perdew, J. P., Burke, K., Ernzerhof, M.. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Troullier, N., Martins, J. L.. Phys Rev B 43, 19932006 (1991).CrossRefGoogle Scholar
Kleinman, L., Bylander, D. M.. Phys Rev Lett. 48 14251428 (1982).CrossRefGoogle Scholar
Kim, G., Jhi, S., Park, N., Louie, S. G., Cohen, M. L.. Phys. Rev B. 78, 085408 (2008).CrossRefGoogle Scholar
Monkhorst, H. J., Park, J. D.. Phys Rev B 13, 5188–92 (1976).CrossRefGoogle Scholar
Lide, D. R., editor. Handbook of chemistry and physics. (Boca Raton, FL: CRC. 2000) 916.Google Scholar
Gao, H., Song, L., Guo, W., Huang, L., et al. , http://dx.doi.org/10.1016/j.carbon.2012.05.026 (2012).CrossRefGoogle Scholar
Sigal, A., Rojas, M. I., Leiva, E. P. M.. Int J Hydrogen Energy 36, 35373546 (2011).CrossRefGoogle Scholar