Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T08:16:26.624Z Has data issue: false hasContentIssue false

GaAs on Si Grown by Mbe: Progress and Applications for Selectivity Doped Heterojunction Transistors (SDHTs)

Published online by Cambridge University Press:  26 February 2011

Naresh Chand
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
J. P. Van Der Ziel
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
J. S. Weiner
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
A. M. Sergent
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
D. V. Lang
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

Recent progress of GaAs-on-Si technology is reviewed and the importance of initial nucleation is emphasized. Growth initiation with a Ga prelayer at a suitable low temperature combined with migration enhanced epitaxy and in-situ thermal annealing has a prospect of giving substantially improved material quality. During the initial growth, use of the minimum necessary As4/Ga flux ratio is found to be critical. The random alignment of the major axis of the oval defects is suggested to be an alternative simple technique to detect the presence of antiphase domains. Patterned growth or post growth patterning releases tensile stress only if the growth edges are free. GaAs-on-Si was completely relaxed from stress by post-growth patterning to 5 μm × 5 μm size patterns. Steps on the surface due to substrate misorientation do not affect the two dimensional electron gas (2DEG) transport properties in AlGaAs/GaAs selectively doped heterojunction transistor (SDHT) structures. For a sheet density of 1012 cm−2, the 2DEG mobility >50,000 cm2V−1s−1 at 77 K was obtained on Si substrates, which is sufficient for fabrication of high performance SDHTs. The study shows that GaAs-on-Si has a great potential for SDHT technology.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Cho, A. Y., in Proceedings of the International Electron Device Meeting 1987, Washington, D.C. (IEEE, Piscataway, N.J. 1987), p. 91.Google Scholar
[2] Shaw, D. W., in Heteroepitaxy on Si II, Fan, J. C. C., Phillips, J. M., and Tsaur, B-Y., eds. (Mater Res. Soc. Symp. Proc. 91, Pittsburg, 1987), p. 15.Google Scholar
[3] Shichijo, H., Tran, L. T., Matyi, R. J., and Lee, J. W., in Heteroepitaxy on Si II, Fan, J. C. C., Phillips, J. M., and Tsaur, B-Y., eds. (Mater. Res. Soc. Symp. Proc. 91, Pittsburg, 1987), p. 201.Google Scholar
[4] Fischer, R., Hendersen, T., Klein, J., Kopp, W., Peng, C. K., Morkoc, H., Detry, J. and Blackstone, S. C., Appl. Phys. Lett. 47, 983 (1985).Google Scholar
[5] Choi, H. K., Turner, G. W., Windhorn, T. H. and Tsaur, B-Y., IEEE Electron Device Lett., EDL–7, 500 (1986).Google Scholar
[6] Ghosh, R. N., Griffing, B., and Ballantyne, J. M., Appl. Phys. Lett. 48, 370 (1986).Google Scholar
[7] Choi, H. K., Turner, G. W., and Tsaur, B-Y., in Heteroepitaxy on Si II, Fan, J. C. C., Phillips, J. M., and Tsaur, B-Y., eds. (Mater. Res. Soc. Symp. Proc. 91, Pittsburg 1987), p. 213.Google Scholar
[8] Shichijo, H., Matyi, R. J., and Taddiken, A. H., IEEE Electron Device Lett. 9, 444 (1988).CrossRefGoogle Scholar
[9] Hall, D. C., Deppe, D. G., Holonyak, N. Jr, Matyi, R. J., Shichijo, H. and Elper, J. E., J. Appl. Phys. 64, 2854 (1988).Google Scholar
[10] Fischer, R., Chand, N., Kopp, W., Peng, C. K., Morkoc, H., Gleason, K. R. and Scheitlin, D., IEEE Trans. Electron Devices, ED–33, 206 (1986).Google Scholar
[11] Fischer, R., Kopp, W., Gedymin, J. S. and Morkoc, H., IEEE Trans. Electron Dev. ED–33, 1407 (1986).Google Scholar
[12] Aksun, M. I., Morkoc, H., Lester, L. F., Duh, K. H. G., Smith, P. M., Chao, P. C., Longerbone, M., and Erickson, L. P., Appl. Phy:;. Lett. 49, 1654 (1986).Google Scholar
[13] Chand, N., Ren, F., Pearton, S. J., Shah, N. J. and Cho, A. Y., IEEE Electron Dev. Lett. EDL–8, 185 (1987).Google Scholar
[14] Ren, F., Chand, N., Garbinski, P., Pearton, S. J., Wu, C. S., Urbanek, L. D., Fullowan, T., Shah, N. and Feuer, M. D., Electron. Lett. 24, 1037 (1988).Google Scholar
[15] Hull, R. and Fischer-Colbrie, A., Appl. Phys. Le At. 50, 851 (1987).Google Scholar
[16] Hull, R., Fischer-Colbrie, A., Rosner, S. J., Koch, S. M., and Harris, J. S. Jr, Appl. Phys. Lett. 51, 1723 (1987).CrossRefGoogle Scholar
[17] Biegelsen, D. K., Ponce, F. A., Krusor, B. S., Tramontoma, J. C. and Yingling, R. D., Appl. Phys. Lett. 52, 1779 (1988).Google Scholar
[18] Bringans, R. D., Olmstead, M. A., Uhiberg, R. I. G., and Bachrach, R. Z., Appl. Phys. Lett. 51, 523 (1987).Google Scholar
[19] Harris, J. S. Jr., Koch, S. M., and Rosner, S. J., in Heteroepitaxy on Si II, Fan, J. C. C., Phillips, J. M., and Tsaur, B-Y. eds. (Mater. Res. Soc. Symp. Proc. 91, Pittsburg, 1987), p. 3.Google Scholar
[20] Varrio, J., Asonen, H., Salokatve, A., Pessa, M., Rauhala, E. and Keinonen, J., Appl. Phys. Lett. 51, 1801 (1987).Google Scholar
[21] Castagne, J., Fontaine, C., Bedel, E., and Munoz-Yague, A., J. Appl. Phys. 64, 2372 (1988).Google Scholar
[22] Bringans, R. D., Olmstead, M. A., Ponce, F. A., Biegelsen, D. K., Krusor, B. S. and Yingling, R. D., J. Appl. Phys. 64, 3472 (1988).Google Scholar
[23] Fischer, R., Neuman, D., Zabel, M., Morkoo, H., Choi, C. and Otsuka, N., Appl. Phys. Lett. 48, 1223 (1986).Google Scholar
[24] Nishimura, T., Mizuguchi, K., Hayafuji, N. and Murotani, T., Jpn. J. Appi. Phys. 26, L1141 (1987).Google Scholar
[25] El-Masry, N. A., Tarn, J. C., and Karam, N. H., J. Appl. Phys. 64, 3672 (1988).Google Scholar
[26] Humphreys, T. P., Hamaguchi, N., Bedair, S. M., Tarn, J. C. L., El-Masry, N., and Radzimski, Z. J., J. Appl. Phys. 64, 3763 (1988).Google Scholar
[27] Chand, N., People, R., Baoicchi, F. A., Wecht, K. W., and Cho, A. Y., Appl. Phys. Lett. 49, 815 (1986).Google Scholar
[28] Lee, J. W., Shichijo, H., Tsai, H. L. and Matyi, R. J., Appl. Phys. Lett. 50, 31 (1987).Google Scholar
[29] Okamoto, H., Watanabe, Y., Kadota, Y., and Ohmachi, Y., Jpn. J. Appl. Phys. 26, L1950 (1987).Google Scholar
[30] Chand, N., Fischer, R., Sergent, A. M., Lang, D. V., Pearton, S. J., and Cho, A. Y., Appl. Phys. Lett. 51, 1013 (1987).Google Scholar
[31] Cho, C., Otsuka, N., Munns, G., Hondre, R., Aorkoc, H., Zhang, S. L., Levi, D., and Klein, M. V., Appl. Phys. Lett. 50, 992 (1987).Google Scholar
[32] Lum, R. M., Klingert, J. K., Davidson, B. A. and Lamont, M. G., Appl. Phys. Lett. 51, 36 (1987).Google Scholar
[33] Ohbu, I., Ishino, M., Nakatani, M. and Shimada, T., J. Appl. Phys. 64, 3295 (1988).Google Scholar
[34] Stolz, W., Horikoshi, Y. and Naganuma, M., Jpn. J. Appl. Phys. 27, L1140 (1988).Google Scholar
[35] Ogasawara, K. and Kondo, K., Jpn. J. Appl. Phys. 27, L1736 (1988).Google Scholar
[36] Chand, N., van der Ziel, J. P., Weiner, J. S., Sergent, A. M., Cho, A. Y., and Grim, K. A., Appl. Phys. Lett. 58, 225 (1988).Google Scholar
[37] Sakai, S., Appl. Phys. Lett. 51, 1069 (1987).Google Scholar
[38] Yacobi, B. G., Jagannath, C., Zemon, S., and Sheldon, P., Appl. Phys. Lett. 52, 555 (1988).Google Scholar
[39] Kawanami, H., Hatayama, A. and Hayashi, Y., J. Electron. Mat. 17, 341 (1988).CrossRefGoogle Scholar
[40] Noge, H., Kano, H., Hashimoto, M., and Igarashi, I., 64, 2246 (1988).Google Scholar
[41] Kawabe, M. and Ueda, T., Jpn. J. Appl. Phys., 26, L944 (1987).Google Scholar
[42] Chu, S. N. G., Nakahara, S., Pearton, S. J., Boone, T., and Vernon, S. M., J. Appl. Phys. 64, 2981 (1988).Google Scholar
[43] Lee, M. P., Wang, S., Huang, Y-H., and Yu, P., Appl. Phys. Lett. 52, 215 (1988).Google Scholar
[44] Matyi, R. J., Shichijo, H. and Tsai, H. L., J. Vac. Sci. Technol. B6, 699 (1988).Google Scholar
[45] Yuan, H. T., Private Communication, and our own observation.Google Scholar
[46] Mahajan, S., Mater. Res. Soc. Symp. Proc., this volume (1988).Google Scholar
[47] Chand, N., Ren, F., Chu, S. N. G., Sergent, A. M., Boone, T. and Lang, D. V., in Heteroepitaxy on Si: Fundamentals, Structure, and Devices, Choi, H. K., Hull, R.. Ishiwara, H. and Nemanich, R. J., eds. (Mat. Res. Symp. Proc., 116, Pittsburg. 1988), p. 205.Google Scholar
[48] Tsui, R. K., Curless, J. A., Kramer, G. D., Peffley, M. S. and Rode, D. L., J. Appl. Phys. 58, 2570 (1985).Google Scholar
[49] Radulescu, D. C., Wicks, G. W., Schaff, W. J., Calawa, A.R., and Eastman, L. F.. J. Appl. Phys. 63, 5115 (1988).Google Scholar
[50] Uppal, P. N. and Kroemer, H., J. Appl. Physics, 58, 2195 (1985).Google Scholar
[51] Ueda, T., Nishi, S., Kawarada, Y., Akiyama, M. and Kaminishi, K., Jpn. J. Appl. Phys. 25, L789 (1986).Google Scholar
[52] Fischer, R., Chand, N., Kopp, W., Morkoc, H., Erickson, L. P., and Youngman, R.. Appl. Phys. Lett. 47, 397 (1985).Google Scholar
[53] Zemon, S., Jagannath, C., Shastry, S. K., and Lambert, G., Solid State Commun. 65, 553 (1988).Google Scholar
[54] Zemon, S., Shastry, S. K., Norris, P., Jagannath, C. and Lambert, G., Solid State Commun. 58, 457 (1986).Google Scholar
[55] Yao, T., Okada, Y., Kawanami, H., Matsui, S., Imagawa, A., and Ishida, K.. in Heteroepitaxy on Si II, Fan, J. C. C., Phillips, J. M., and Tsaur, B-Y., eds. (Mater. Res. Soc. Symp. Proc. 91, Pittsburg, 1987) p. 63.Google Scholar
[56] Okamoto, A. and Ohata, K., Appl. Phys. Lett. 51, 1512 (1987).Google Scholar
[57] Chand, N., van der Ziel, J. P., Dupuis, R. D., and Sergent, A. M., Optoelectronics-Devices and Technologies, 2, 329 (1987).Google Scholar
[58] Waldrop, J. R., Appl. Phys. Lett. 44, 1002 (1981).Google Scholar