Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T00:45:19.487Z Has data issue: false hasContentIssue false

Free Volume Relaxation Process in Zr50Cu40Al10 Bulk Metallic Glass Studied by Positron Annihilation Techniques

Published online by Cambridge University Press:  01 February 2011

Akito Ishii
Affiliation:
[email protected], OSAKA PREFECTURE UNIVERSITY, MATERIAL SCIENCE ENGINEER, 1-1 NAKAKU GAKUENCHO, SAKAI, N/A, Japan
Fuminobu Hori
Affiliation:
[email protected], Osaka Prefecture University, Department of Materials Science, 1-1 Gakuen-cho,Nakaku, Sakai, 599-8531, Japan
Akihiro Iwase
Affiliation:
[email protected], Osaka Prefecture University, Department of Materials Science, 1-1 Gakuen-cho,Nakaku, Sakai, 599-8531, Japan
Yoshihiko Yokoyama
Affiliation:
[email protected], Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
Toyohiko J Konno
Affiliation:
[email protected], Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
Get access

Abstract

Structural relaxation around free volume in Zr50Cu40Al10 bulk metallic glass (BMG) during isothermal annealing at 473, 573 and 673 K which are below glass transition temperature Tg =675 K have been investigated by positron annihilation lifetime (PAL) and coincidence Doppler broadening (CDB) measurements. The trends of change in positron lifetime, which correspond to the size of free volume at each annealing temperature, have a good correlation with their density change. These annealing processes obey a stretched exponential relaxation function (KWW: Kohlrausch-Williams-Watts law). Fitting parameters of KWW function, with relaxation time t0 and β, in each temperature were determined. These relaxation parameters depend on the annealing temperature, suggesting the distribution of activation energy for structural relaxation. Moreover, the profile of electron momentum distribution around free volume derived by CDB spectrum during annealing showed no appreciable change at each temperature. These facts suggest that long range chemical ordering, particularly around the free volume, dose not take place essentially.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Taub, A.I. and Spaepen, F., Acta Metall. 28, 17811788 (1980).Google Scholar
2. Chen, H.S., Kimerling, L.C., Poate, J.M. and Brown, W.L., Appl. Phys. Lett. 32, 461463(1978).Google Scholar
3. Flores, K.M., Suh, D., Howell, R., Asoka-Kumar, P., Sterne, P.A. and Dauskardt, R.H., Mater.Trans. 42, 619622 (2001).Google Scholar
4. Beukel, A. van den and Sietsma, J., Acta Metall. Mater. 38, 383389 (1990).Google Scholar
5. Hautojarvi, P. Positronin Solids(Berlin:Springer)(1979)Google Scholar
6. Nagel, C., Rätzke, K., Schmidtke, E., Wolff, J., Geyer, U. and Faupel, F., Phys. Rev. B. 57, 1022510227 (1998).Google Scholar
7. Gallino, I., Shah, M. B. and Busch, R., Acta Mater. 55, 13671376 (2007).Google Scholar
8. Fan, G. J., Loffler, J. F., Wunderlichc, R. K. and H. -J. Fechtc, Acta Mater. 52, 667674(2004).Google Scholar
9. Yano, T., Yorikado, Y., Akeno, Y., Hori, F., Yokoyama, Y., Iwase, A., Inoue, A. and Konno, T. J., Mater. Trans. 46, 28862892 (2005).Google Scholar
10. Hori, F., Yano, T., Yokoyama, Y., Akeno, Y. and Konno, T. J., J. Alloy and Comp. 434, 207210 (2007).Google Scholar
11. Yokoyama, Y., Inoue, K. and Fukaura, K., Mater. Trans. 43, 23162319 (2002).Google Scholar
12. Yokoyama, Y., Fukaura, K. and Inoue, A., Intermetallics 10, 11131124 (2002).Google Scholar
13. Kirkegaard, P., Eldrup, M., Mogensen, O.E. and Pedersen, N.J., Comp. Phys. Commun. 23, 307335 (1981).Google Scholar
14. Seeger, A., Banhart, F. and Bauer, W., Positron annihilation rates in metals and semiconductors, Proceedings of the Ninth International Conference on Positron Annihilation 275277 (1991).Google Scholar
15. Petegem, S. Van, Segers, D., Pelosin, V. and Kuriplach, J., Appl. Phys. A. 81, 10391044(2005).Google Scholar
16. Jackle, J., Rep. Prog. Phys. 49, 171231 (1986).Google Scholar