Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T18:25:50.022Z Has data issue: false hasContentIssue false

Formation of Nanoparticles of Organic Molecules by Liquid Laser Ablation

Published online by Cambridge University Press:  31 July 2012

Ikuko Akimoto
Affiliation:
Faculty of Systems Engineering, Wakayama University, Sakaedani 930, Wakayama 640-8510, Japan
Masahiro Ohata
Affiliation:
Faculty of Systems Engineering, Wakayama University, Sakaedani 930, Wakayama 640-8510, Japan
Nobuhiko Ozaki
Affiliation:
Faculty of Systems Engineering, Wakayama University, Sakaedani 930, Wakayama 640-8510, Japan
Gu Ping
Affiliation:
Faculty of Education, Wakayama University, Sakaedani 930, Wakayama 640-8510, Japan
Get access

Abstract

We carried out laser ablation of three organic molecules, rubrene (Rb), Oralith Brilliant Pink R (BP) and quinacridonequinone (QQ) in a poor solvent, water. As a result, nanoparticles of BP and QQ were formed, but those of Rb were not formed because of photodissociation. For a rigid molecule, QQ, optical properties of colloidal solutions were investigated in relation to the size of the included nanoparticles. A linear correlation between the blue shift of the absorption peak energy and the decrease in the diameter of the nanoparticles was found, indicating that the nanoparticle diameter can be easily estimated from the absorption spectrum of a colloidal solution. From the solution, a nanoparticle film was fabricated on an electrode by the electrophoretic deposition method.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tang, C. W. and VanSlyke, S. A., Appl.Phys.Lett. 51, 913 (1987).10.1063/1.98799Google Scholar
2. Fukuhara, H. and Masuhara, H., Chem.Phys.Lett. 221, 373378 (1994).Google Scholar
3. Fujiwara, H., Fukuhara, H., and Masuhara, H., J.Phys.Chem. 99, 1184411853 (1995).10.1021/j100031a010Google Scholar
4. Volkov, V.V., Asahi, T., Masuhara, H., Masuhara, A., Kasai, H., Oikawa, H., and Nakanishi, H., J.Phys.Chem.B 108, 76747680 (2004).10.1021/jp031369oGoogle Scholar
5. Tamaki, Y., Asahi, T., and Masuhara, H., Appl. Surf. Sci. 168, 85v88 (2000).10.1016/S0169-4332(00)00596-1Google Scholar
6. Tamaki, Y., Asahi, T., and Masuhara, H., J. Phys. Chem. A 106, 21352139 (2002).10.1021/jp012518aGoogle Scholar
7. Tamaki, Y., Asahi, T., and Masuhara, H., Jpn.J.Appl.Phys. 42, 27252729 (2003).10.1143/JJAP.42.2725Google Scholar
8. Hosokawa, Y., Yashiro, M., Asahi, T., and Masuhara, H., J.Photochem.Photobio. A: Chem. 142, 197207. (2001)10.1016/S1010-6030(01)00514-7Google Scholar
9. Sugiyama, T., Asahi, T., Takeuchi, T., and Masuhara, H., Jpn.J.Appl.Phys. 45, 384388 (2006).10.1143/JJAP.45.384Google Scholar
10. Jeon, H-G., Sugiyama, T., Masuhara, H., and Asahi, T., Jpn.J.Appl.Phys. 46, L733L735 (2007).10.1143/JJAP.46.L733Google Scholar
11. Asahi, T., Sugiyama, T., and Masuhara, H., Acc.Chem.Res. 41, 17901798 (2008).10.1021/ar800125sGoogle Scholar
12. Yasukuni, R., Asahi, T., Sugiyama, T., Masuhara, H., Sliwa, M., Hofkens, J., De Schryver, F.C., van der Auweraer, M., Herrmann, A., and Muellen, K., Appl.Phys.A 93, 59 (2008).10.1007/s00339-008-4661-5Google Scholar
13. Yasukuni, R., Sliwa, M., Hofkens, J., De Schryver, F.C., Herrmann, A., Muellen, K., and Asahi, T., Jpn. J. of Appl. Phys 48, 065002 (2009).10.1143/JJAP.48.065002Google Scholar
14. Kita, S., Masuo, S., Machida, S., and Itaya, A., Jpn.J.Appl.Phys. 45, 65016507 (2006).10.1143/JJAP.45.6501Google Scholar
15. Tabata, H., Akamatsu, M., Fujii, M., and Hayashi, S., Jpn.J.Appl.Phys. 46, 43384343 (2007).10.1143/JJAP.46.4338Google Scholar
16. Akimoto, I., Ohata, M., Ozaki, N., and Ping, G., Chem.Phys.Lett. submitted.Google Scholar