Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T05:35:58.280Z Has data issue: false hasContentIssue false

Exfoliated Clay Nanoplatelets as Gelator and Oxidizing Agent for Ionic Liquid Electrolyte to Enhance Photovoltaic Performance of Dye-Sensitized Solar Cells

Published online by Cambridge University Press:  21 July 2014

You-Chun Cheng
Affiliation:
Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan
Chia-Hsin Lee
Affiliation:
Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan
Chun Kai Tsai
Affiliation:
Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
King-Fu Lin
Affiliation:
Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
Get access

Abstract

Exfoliated montmorillonite (exMMT) nanoplatelets are a two-dimensional electrolyte carrying ∼1.78 dissociable monovalent cations per nanometer square. They were fabricated through soap-free emulsion polymerization of poly(methyl methacrylate) in the presence of MMT. Because the dissociated exMMTs are anionic, they were not only capable of gelatinizing 1-methyl-3-propylimidazolium iodide (MPII) ionic liquid-based electrolyte, but also increased the power conversion efficiency of resulting dye-sensitized solar cell (DSSC) from 6 to 7.77%. Recently, we investigated the ionic conductive mechanism of exMMT-gelled MPII ionic liquid-based electrolyte and found that the exMMTs acted like an oxidizing agent for iodide ions (I-). As exMMTs were mixed with MPII, I- ions readily oxidized to I3- and even to I5- ions by losing the electrons. Consequently, the ionic conductivity was significantly increased due to the fact that I-, I3-, and I5- tended to form redox couples that transported faster by way of the Grothus/exchange reaction process.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Usuki, A., Hasegawa, N., Kadoura, H., and Okamoto, T., Nano Lett. 1, 271 (2001).10.1021/nl010015aCrossRefGoogle Scholar
Lai, Y. H., Chiu, C. W., Chen, J. G., Wang, C. C., Lin, J. J., Lin, K. F., and Ho, K. C., Solar Energy Materials & Solar Cells., 93, 1860 (2009).10.1016/j.solmat.2009.06.027CrossRefGoogle Scholar
Lai, Y. H., Lin, C. Y., Chen, J. G., Wang, C. C., Huang, K. C., Liu, K. Y., Lin, K. F., Lin, J. J., and Ho, K. C., Solar Energy Materials & Solar Cells., 94, 668 (2010).10.1016/j.solmat.2009.11.027CrossRefGoogle Scholar
Lin, K. F., Lin, S. C., Chien, A. T., Hsieh, C. C., Yen, M. H., Lee, C. H., Lin, C. S., Chiu, W. Y., and Lee, Y. H., J. Polym. Sci., Part A: Polym. Chem. 44, 5572 (2006).10.1002/pola.21657CrossRefGoogle Scholar
Lin, K. J., Dai, C. A., and Lin, K. F., J. Polym. Sci., Part A: Polym. Chem. 47, 459 (2009).10.1002/pola.23163CrossRefGoogle Scholar
Lin, K. F., Lin, S. C., Chien, A. T., Hsieh, C. C., and Yen, M. H., ROC Patent I284654 (2007).Google Scholar
Tu, C. W., Liu, K. Y., Chien, A. T., Yen, M. H., Weng, T. H., Ho, K. C., and Lin, K. F., J. Polym. Sci., Part A: Polym. Chem. 46, 47 (2008).10.1002/pola.22356CrossRefGoogle Scholar
Lee, C. H., Weng, T. H., Liu, K. Y., Lin, K. J., and Lin, K. F., J. Appl. Polym. Sci. 118, 652 (2010).Google Scholar
Papageorgiou, N., Athanassov, Y., Armand, M., Bonhote, P., Pettersson, H., Azam, A., Gratzel, M., J. Electrochem. Soc. 143, 3099 (1996).10.1149/1.1837171CrossRefGoogle Scholar
Wang, P., Zakeeruddin, S. M., Exnar, I., Gratzel, M., Chem. Commun. 24, 2972 (2002).10.1039/B209322GCrossRefGoogle Scholar
Wang, P., Zakeeruddin, S.M., Comte, P., Exnar, I., Gratzel, M., J. Am. Chem. Soc. 125, 1166 (2003).10.1021/ja029294+CrossRefGoogle Scholar
Gorlov, M., Kloo, L., Dalton Trans. 2655 (2008).10.1039/b716419jCrossRefGoogle Scholar
Wang, N., Lin, H., Li, J., Li, X., Appl. Phys. Lett. 89, 194104 (2006).10.1063/1.2387967CrossRefGoogle Scholar
Chou, C. C., L.Chiang, M., and Lin, J. J., Macromol. Rapid. Commun. 26, 1841 (2001).10.1002/marc.200500559CrossRefGoogle Scholar
Chou, C.C., and Lin, J.J., Macromolecules 38, 230 (2005).10.1021/ma047761xCrossRefGoogle Scholar
Lee, C. H., Liu, K. Y., Chang, S. H., Lin, K. J., Lin, J. J., Ho, K. C., and Lin, K. F., J. Colloid Interf. Sci. 363, 635 (2011).10.1016/j.jcis.2011.08.009CrossRefGoogle Scholar
Lin, K. F., Lee, C. H., Lin, K. J., and Liu, K. Y., US Patent 8,513,519 B2 (2013)Google Scholar
Tu, C. W., Liu, K. Y., Chien, A. T., Lee, C. H., Ho, K. C., Lin, K. F., Eur. Polymer J. 44, 354 (2008).10.1016/j.eurpolymj.2008.01.005CrossRefGoogle Scholar