Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T04:00:42.899Z Has data issue: false hasContentIssue false

Evaluation of the Interface Structure During Stranski-Krastanov Growth of GE(SI) on Si (001)

Published online by Cambridge University Press:  25 February 2011

M. Albrecht
Affiliation:
Universiẗt Erlangen, Institut fur Werkstoffwissenschaften VII, Haberstraβe 2, DW-8520 Erlangen, Federal Republic of, Germany
H. P. Strunk
Affiliation:
Universiẗt Erlangen, Institut fur Werkstoffwissenschaften VII, Haberstraβe 2, DW-8520 Erlangen, Federal Republic of, Germany
P. O. Hansson
Affiliation:
Max-Planck-Institut fur Festkörperforschung, HeisenbergstraBe 1, DW-7000 Stuttgart 80, Federal Republic of, Germany
E. Bauser
Affiliation:
Max-Planck-Institut fur Festkörperforschung, HeisenbergstraBe 1, DW-7000 Stuttgart 80, Federal Republic of, Germany
Get access

Abstract

The initial stages of heteroepitaxial growth of Ge0.85 Si0.15 on Si(001) grown from Bi solution (liquid phase epitaxy) are studid by transmission electron microscopy. Stranski-Krastanov growth is observed to take place. After growth of a pseudomorphic Ge0.85 Si0.15 layer of 4 monolayer thickness, islands form and grow pseudomorphically up to a thickness of 30 nm. Then first misfit dislocations form. The formation process of these dislocations is analyzed and discussed in terms of half loop nucleation at the surface and dislocation glide. Evidence for glide on (110) planes is put forward.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. van der Merwe, J.H., J. Appl. Phys. 34, 117 (1963); 34, 123 (1963).CrossRefGoogle Scholar
2. Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 27, 118 (1974);Google Scholar
Matthews, J.W., J. Vac. Sci Technol. 12, 126 (1975).CrossRefGoogle Scholar
3. People, R. and Bean, J.C., Appl. Phys. Lett. 47, 322 (1985); Appl. Phys. Lett. 49, 229 (1986).CrossRefGoogle Scholar
4. Dodson, B.W. and Tsao, J.Y., Appl. Phys. Lett. 51, 1325 (1985).CrossRefGoogle Scholar
5. Hull, R., Bean, J.C. and Buescher, C., J. Appl. Phys. 66, 5837 (1989).CrossRefGoogle Scholar
6. Tuppen, C.G., Gibbings, C.J. and Hockly, M., J. Cryst. Growth 94, 392 (1989).CrossRefGoogle Scholar
7. Eaglesham, D.J., Kvam, E.P., Maher, D.M., Bean, J.C. and Humphreys, J.C., Phys. Rev. Lett. 62, 187 (1989).CrossRefGoogle Scholar
8. LeGoues, F.K., Copel, M. and Tromp, R.M., Phys. Rev. B 42, 11690 (1990).CrossRefGoogle Scholar
9. Horn-van Hoegen, M., LeGoues, F.K., Copel, M., Reuter, M.C. and Tromp, R.M., Phys. Rev. Lett. 67, 1130 (1991).CrossRefGoogle Scholar
10. Kern, W. and Puotinen, D.A., RCA Rev. 6, 187 (1970).Google Scholar
11. Sze, S.M., Physics of Semiconductor Devices, (Wiley, New York, 1981, 2nd Ed.) p. 68 Google Scholar
12. Hornstra, J., J. Phys. Chem. Solids 5, 129 (1957).CrossRefGoogle Scholar
13. Marée, P.M.J., Barbour, J.C., van der Veen, J.F., Kavanagh, K.L., Bulle-Lieuwma, C.W.T. and Viegers, M.P.A., J. Appl. Phys. 62, 4413 (1987).CrossRefGoogle Scholar
14. Schwartzman, A.F. and Sinclair, R., J. Electr. Mat. 20, 805 (1991).CrossRefGoogle Scholar
15. Käss, D. and Strunk, H.P., Thin Solid Films 81, L101 (1981).CrossRefGoogle Scholar