Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-07T23:02:39.175Z Has data issue: false hasContentIssue false

Enzymes and Cells Confined in Silica Nanopores

Published online by Cambridge University Press:  21 March 2011

Jacques Livage
Affiliation:
Unité des Entérobactéries, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
Cécile Roux
Affiliation:
Unité des Entérobactéries, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
Thibaud Coradin
Affiliation:
Unité des Entérobactéries, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
Souad Fennouh
Affiliation:
Unité des Entérobactéries, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
Stéphanie Guyon
Affiliation:
Unité des Entérobactéries, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
Laurie Bergogné
Affiliation:
Unité des Entérobactéries, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
Anne Coiffier
Affiliation:
Laboratoire de Chimie de la Matiére Condensée, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris, France
Odile Bouvet
Affiliation:
Unité des Entérobactéries, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
Get access

Abstract

The sol-gel process opens new possibilities in the field of biotechnologies. Sol-gel glasses are formed at room temperature via the polymerization of molecular precursors. Enzymes can be added to the solution of precursors and trapped within the growing silica network. Small substrate molecules can diffuse through the pores allowing reactions to be performed in-situ, within the silica gels. Enzyme are encased by the hydrated silica in a cage tailored to their size, they retain their biocatalytic activity and may even be stabilized within the sol-gel matrix.

Whole cell bacteria have also been immobilized within sol-gel glasses. They behave as a "bag of enzymes" and their membrane protects enzymes against denaturation and leaching. The cellular organization of bacteria cells is preserved upon encapsulation. Experiments performed with Escherichia coli induced to β-galactosidase show that they still exhibit noticeable enzymatic activity. Some degradation of the cell walls may even occur increasing the “measured” activity. However silica gels made from aqueous precursors seem to prevent bacteria from natural degradation upon ageing.

Antibody-antigen recognition has been shown to be feasible within sol-gel matrices. Trapped antibodies bind specifically the corresponding haptens and can be used for the detection of traces of chemicals. Even whole cell protozoa have been encapsulated without any alteration of their cellular organization. For medical applications, trapped parasitic protozoa have been used as antigens for blood tests with human sera. Antigen-antibody interactions were followed by the so-called Enzyme Linked ImmunoSorbent Assays (ELISA).

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Weetall, H., Trends in Biotechnology, 3, 276 (1985).Google Scholar
2. Avnir, D., Braun, S., Lev, O., Ottolenghi, M., Chem. Mater., 6, 1605 (1994).Google Scholar
3. Dave, C., Dunn, B., Valentine, J.S., Zink, J.I., Anal. Chem., 66, 1120A (1994).Google Scholar
4. Livage, J., C.R Acad. Sci. Paris, 322, 417 (1996).Google Scholar
5. Brinker, C.J., Scherer, G.W., Sol-Gel Science, (Academic press, 1990).Google Scholar
6. Iler, R. K., the Chemistry of Silica, (John Wiley, 1979).Google Scholar
7. Braun, S., Rappoport, S., Zusman, R., Avnir, D., Ottolenghi, M., Mater. Lett., 10, 1 (1990).Google Scholar
8. Yamanaka, S.A., Nishida, F., Ellerby, L.M., Nishida, C.R., Dunn, B., Valentine, J.S., Zink, J.I., Chem. Mater., 4, 495 (1992).Google Scholar
9. Audebert, P., Demaille, C., Sanchez, C., Chem. Mater., 5, 911 (1993).Google Scholar
10. Chen, Q., Kenausis, G.L., Heller, A., J. Am. Chem. Soc., 120, 4582 (1998).Google Scholar
11 Badjic, J.D., Kostic, N.M., Chem. Mater., 11, 3671 (1999).Google Scholar
12. Heller, J., Heller, A., J. Am. Chem. Soc., 120, 4586 (1998)Google Scholar
13. Schmid, R.D., Verger, R., Angew. Chem. Int. Ed., 37, 1608 (1998).Google Scholar
14. Reetz, M.T., Adv. Mater., 9, 943 (1997).Google Scholar
15. Willaert, R.G., Baron, G.V., Baker, L. de in Immobilized Living Cell Systems, ed. Willaert, R.G., Baron, G.V., Baker, L. de (John Wiley, 1996) pp.2195.Google Scholar
16. Carturan, G., Campostrini, R., Dire, S., Scardi, V., Alteriis, E. de, J. Mol. Catal., 57, L13 (1989).Google Scholar
17. Inama, L., Dire, S., Carturan, G., Carazza, A., J. Biotechnol., 30, 197 (1993).Google Scholar
18. Fennouh, S., Guyon, S., Jourdat, C., Livage, J., Roux, C., C.R. Acad. Sci. Paris, IIc, 625 (1999).Google Scholar
19. Livage, J., Roux, C., Costa, J.M. Da, Desportes, I., Quinson, J.Y., J. Sol-Gel Sci. Tech., 7, 45 (1996).Google Scholar
20. Collino, R., Therasse, J., Binder, P., Chaput, F., Boilot, J.P., Levy, Y., J. Sol-Gel Sci. Tech., 2, 823 (1994).Google Scholar
21. Turniansky, A., Avnir, D., Bronshtein, A., Aharonson, N., Altstein, M., J. Sol-Gel Sci. Tech., 7, 135 (1996).Google Scholar
22. Lan, E.H., Dunn, B., Zink, J.I., Chem. Mater., 12, 1874 (2000).Google Scholar
23. Barreau, J.Y., Costa, J.M. da, Desportes, I., Livage, J., Monjour, L., Gentilini, M., C.R. Acad. Sci. Paris, 317, 653 (1994).Google Scholar
24. Venkatesan, P., Wakelin, D., Parasitology Today, 9, 228 (1993).Google Scholar
25. Carturan, G., Dellagiacoma, G., Rossi, M., R. Dal Monte, Muraca, M., Sol-Gel Optics IV, SPIE Proc., 3136, 366 (1997).Google Scholar
26. Pope, E.J.A., Braun, K., Peterson, C.M., J. Sol-Gel Sci. Tech., 8, 635 (1997).Google Scholar