Article contents
Enzymes and Cells Confined in Silica Nanopores
Published online by Cambridge University Press: 21 March 2011
Abstract
The sol-gel process opens new possibilities in the field of biotechnologies. Sol-gel glasses are formed at room temperature via the polymerization of molecular precursors. Enzymes can be added to the solution of precursors and trapped within the growing silica network. Small substrate molecules can diffuse through the pores allowing reactions to be performed in-situ, within the silica gels. Enzyme are encased by the hydrated silica in a cage tailored to their size, they retain their biocatalytic activity and may even be stabilized within the sol-gel matrix.
Whole cell bacteria have also been immobilized within sol-gel glasses. They behave as a "bag of enzymes" and their membrane protects enzymes against denaturation and leaching. The cellular organization of bacteria cells is preserved upon encapsulation. Experiments performed with Escherichia coli induced to β-galactosidase show that they still exhibit noticeable enzymatic activity. Some degradation of the cell walls may even occur increasing the “measured” activity. However silica gels made from aqueous precursors seem to prevent bacteria from natural degradation upon ageing.
Antibody-antigen recognition has been shown to be feasible within sol-gel matrices. Trapped antibodies bind specifically the corresponding haptens and can be used for the detection of traces of chemicals. Even whole cell protozoa have been encapsulated without any alteration of their cellular organization. For medical applications, trapped parasitic protozoa have been used as antigens for blood tests with human sera. Antigen-antibody interactions were followed by the so-called Enzyme Linked ImmunoSorbent Assays (ELISA).
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2001
References
- 1
- Cited by