Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T07:49:25.107Z Has data issue: false hasContentIssue false

Environment Sensitive Embedding Energies of Impurities, and Grain Boundary Relaxation in Iron

Published online by Cambridge University Press:  25 February 2011

Genrich L. Krasko*
Affiliation:
Metals Research Branch, SLCMT-EMM, U. S. Army Materials Technology Laboratory, Watertown, MA 02172–0001
Get access

Abstract

Impurities, such as H, P, S, B, etc, have a very low solubility in iron, and therefore prefer to segregate at the grain boundaries (GBs). In order to analyze the energetics of the impurities on the iron GB, the LMTO calculations were performed on a simple 8-atom supercel 1 emulating a typical (capped trigonal prism) GB environment. The so-called “environment-sensitive embedding energies” were calculated for H, B, C, N, O, Al, Si, P, and S, as a function of the electron charge density due to the host atoms at the impurity site. It was shown that, at the electron charge density typical of a GB, B and C have the lowest energy among the analyzed impurities, and thus would compete with them for the site on the GB, tending to push the other impurities off the GB. The above energies were then used in a modified Finnis-Sinclair embedded atom approach for calculating the equilibrium interplanar distances in the vicinity of a (111) σ3 tilt GB plane, both for the clean GB and that with an impurity. These distances were found to be oscillating, returning to the equilibrium spacing between (111) planes in bulk BCC iron by the 10th-12th plane off the GB plane. H, B, C, N and O actually dampen the deformation wave (making the oscillation amplitudes less than in the clean GB), while, Al, Si, P and S result in an increase of the oscillations. The effect of B, C, N and O may be interpreted as cohesion enhancement; this conclusion supports our earlier first-principles results [1] on B and C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Krasko, G. L. and Olson, G. B., Solid State Commun. 76, 247 (1990)Google Scholar
2. Briant, C. L. and Banerji, S.K. in Embrittlement of Engineering Alloys (ed. Briant, C. L. and Banerji, S.K.), Acad. Press, New York, 1983, p. 21;Google Scholar
Guttmann, M. and. McLean, D. in Interfacial Segregations (ed. Johnson, W.C. and Blakely, J. M.), ASM, Metals Park, OH, 1979, p. 261 Google Scholar
3. Troiano, A. R., Trans. Am. Soc. Met., 52, 54 (1960)Google Scholar
4. Stark, J. P. and Marcus, H. L., Metall. Trans. A, 8A, 1423 (1977);Google Scholar
Lee, D. Y., Barrera, E. V., Stark, J. P. and Marcus, H. L., Metall. Trans. A, 15A, 1415 (1984)Google Scholar
5. Meyers, C. L. Jr, Onoda, G. Y., Levy, A. V., and Kotfila, R. J., Trans. Metall. Society of AIME, 233, 720 (1965)Google Scholar
6. Seah, M. P., J. Phys. F, 10, 1043 (1980)Google Scholar
7. Eberhart, M. E., Johnson, K. H., and Latanision, R. M., Acta Metall., 32, 955 (1984);Google Scholar
Eberhart, M. E., Latanision, R. M., and Johnson, K. H., Acta Metall., 33, 1769 (1985);Google Scholar
Eberhart, M. E. and Vvedensky, D. D., in Chemistry and Phvsics of Fracture, (ed. Jones, R. H. and Latanision, R. M.), Martinus Nijhoff, 1987, p. 163 Google Scholar
8. Hashimoto, M., Ishida, Y., Yamamoto, R., Doyama, M., and Fujiwara, T., J. Phys. F, 11, L141 (1981); Surface Sci., 144, 182 (1984);Google Scholar
Hashimoto, M., Ishida, Y., Wakayama, S., Yamamoto, R., Doyama, M. and Fujiwara, T., Acta Metall., 32, 13 (1984)Google Scholar
9. Crampin, S., Vvedensky, D. D., MacLaren, J. M., and Eberhart, M.E., Phys. Rev., B40, 3413 (1989)Google Scholar
10. Krasko, G. L. and Olson, G. B., Solid State Commun., 79, 113 (1991)Google Scholar
11. Daw, M. S., Phys. Rev., B39, 7441 (1989);Google Scholar
Daw, M. S. and Baskes, M. I., Phys. Rev., B29, 6443 (1984)Google Scholar
12. Finnis, M. W. and Sinclair, J. E., Phil. Mag., A50, 45 (1984); A53, 161 (1986)CrossRefGoogle Scholar
13. Daw, M. S. and Baskes, M. I., Phys. Rev. Lett., 50, 1285 (1983);Google Scholar
Daw, M. S. and Baskes, M. I., in Chemistry and Physics of Fracture (ed. Jones, R. H. and Latanision, R. M.), Martinus Nijhoff, 1987, p. 196 Google Scholar
14. Nørskov, J. K. and Lang, N. D., Phys. Rev., B21, 2136 (1980)Google Scholar
15. Stott, M. J. and Zaremba, D. M., Phys. Rev., B22, 1564 (1980)Google Scholar
16. Puska, M. J., Nieminen, R. M., and Manninen, M., Phys. Rev., B24, 3037 (1981)Google Scholar
17. Stott, M. J. and Zaremba, E., Can. J. Phys, 60, 1145 (1982)Google Scholar
18. Nørskov, J. K., Phys. Rev., B26, 2875 (1982)Google Scholar
19. Jacobsen, K. W., Nørskov, J. K. and Puska, M. J., Phys. Rev., B35, 7423 (1987)Google Scholar
20. Raeker, T. J. and DePristo, A. E., Surface Sci., 235, 84 (1990) and references thereinGoogle Scholar
21. Asby, M. F., Spaepen, F., and Williams, S., Acta Metall. 26, 1647 (1978);Google Scholar
Ashby, M. F. and Spaepen, F., Scripta Met., 12, 193 (1978);Google Scholar
Frost, H. F., Ashby, M. F., and Spaepen, F., Scripta Met., 14, 1051 (1980)Google Scholar
22. Hashimoto, M., Ishida, Y., Yamamoto, R., Doyama, M., and Fujiwara, T., Scripta Met., 16, 267 (1982);Google Scholar
Hashimoto, M., Ishida, Y., Yamamoto, R., and Doyama, M., Acta Metall., 32, 1 (1984);Google Scholar
Ishida, Y. and Mori, M., Journal de Physique, Colloque C4, 46, C4465 (1985)Google Scholar
23. Andersen, O. K., Jepsen, O., and Glötzel, D., in Highlights of Condensed Matter Theory (ed. Bassani, F., Fumi, F. and Tosi, M. P.) North Holland, New York, 1985;Google Scholar
Andersen, O. K., in Electronic Structure of Complex Systems (ed. Phariseau, P. and Timmerman, W. M.), Plenum, New York, 1984, p. 11;Google Scholar
Skriver, H. L., The LMTO Method. Springer, Berlin, 1984 Google Scholar
24. von Barth, U. and Hedin, L., J. Phys., C 5, 1629 (1972)Google Scholar
25. Möller, R., Hänsel, H., and Grabke, H. J., Ser. Metali., 18, 527 (1984);CrossRefGoogle Scholar
Grabke, H. J., Ser. Metali., 20, 1641 (1986);Google Scholar
Suzuki, S., Obata, M., Abiko, K., and Kimura, H., Trans. Iron Steel Inst. Jpn., 25, 62 (1985)Google Scholar
26. Tauber, G. and Grabke, H. J., Ber. Bunsenges Phys. Chem., 82, 198 (1978)Google Scholar
27. Suzuki, S., Tanii, S., Abiko, K., and Kimura, H., Metall Trans., A18, 1109 (1987),Google Scholar
Grabke, H. J., Steel Research, 57, 178 (1986);Google Scholar
Shin, K. S. and Tsao, B. H., Ser. Metall., 22, 585(1988)Google Scholar
28. Erhart, H. and Grabke, H. J., Ser. Metall, 15, 531 (1981)Google Scholar
29. Krasko, G. L., unpublishedGoogle Scholar
30. Seah, M. P., Acta Metall., 28, 955 (1980)Google Scholar
31. Rice, J. C., in Effect of Hydrogen on Behavior of Materials fed, Thomson, A. W. and Bernstein, I. M.), The Metallurgical Society of AIME, Warrendale, PA, 1976; p. 455;Google Scholar
Hirth, J. P. and Rice, J. R., Metall. Trans. A11, 1502 (1980);Google Scholar
Rice, J. R. and Wang, J.-S., Mat. Sci. and Eng. A, 107, 23 (1989)Google Scholar