Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T05:16:57.970Z Has data issue: false hasContentIssue false

Enhanced Photoluminescence of Sulfur-Bridged Organic Chromophores

Published online by Cambridge University Press:  16 January 2014

Peter R. Christensen
Affiliation:
Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
Élise Caron
Affiliation:
Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
Jeffery A. Nagle
Affiliation:
Department of Chemistry, Bowdoin College, Brunswick, Maine, 04011, United States
Aini Bhatti
Affiliation:
Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
Michael O. Wolf
Affiliation:
Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
Get access

Abstract

A general approach to enhancing the photoluminescent quantum yield for a series of organic chromophores is presented. By bridging a chromophore symmetrically about a sulfur atom it was found that the photoluminescence could be systematically increased by oxidizing the bridge. Furthermore, the enhanced quantum yields were achieved without diminishing the solubility of these chromophores in common organic solvents. The photophysical characterization, as well as potential applications of these molecules will be discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Grimsdale, A. C., Chan, K. L., Martin, R. E., Jokisz, P. G., Holmes, A. B., Chem. Rev. 109, 8971091, (2009).CrossRefGoogle Scholar
(a) Fyfe, D., Nat. Photonics, 3, 453455, (2009).(b)Santato, C., Cicoira, F., Martel, R., Nat. Photonics, 5, 392−393, (2011).CrossRefGoogle Scholar
Yan, H., Chen, Z., Zheng, Y., Newman, C., Quinn, J. R., Dötz, F., Kastler, M., Facchetti, A., Nature, 457, 679687, (2009).CrossRefGoogle Scholar
Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burn, P. L., Holmes, A. B., Nature. 347, 539541, (1990).CrossRefGoogle Scholar
Baldo, M. A., O’Brien, D. F., You, Y., Shoustikov, A., Thompson, M. E., Forrest, S. R., Nature, 395, 151, (1998).CrossRefGoogle Scholar
Grebner, D., Helbig, M., Rentsch, S., J. Phys. Chem. 99, 1699116998, (1995).CrossRefGoogle Scholar
Murphy, A. M., Fréchet, J. M. J., Chang, P., Lee, J., Subramanian, V., J. Am. Chem. Soc. 126, 15961597, (2003).CrossRefGoogle Scholar
Christensen, P. R., Nagle, J. K., Bhatti, A., Wolf, M. O., J. Am. Chem. Soc. 135, 81098112, (2013).CrossRefGoogle Scholar
Park, N., Park, K., Jang, M., Lee, S., J. Org. Chem. 76, 43714378, (2011).CrossRefGoogle Scholar
(a) Wan, Z., Jenks, W. S., J. Am. Chem. Soc. 117, 26672668, (1995).(b)Lee, W., Jenks, W. S., J. Org. Chem. 66, 474 – 480, (2001).(c)Cubbage, J. W., Jenks, W. S., J. Phys. Chem. A. 105, 10588 – 10595, (2001).(d)Vos, B. A., Jenks, W. S., J. Am. Chem. Soc. 124, 3544 – 2547, (2002).CrossRefGoogle Scholar
Yan, L., Chen, X., He, Q., Wang, Y., Wang, X., Guo, Q., Bai, F., Xia, A., J. Phys. Chem. A. 116, 86938705, (2012).CrossRefGoogle Scholar
(a) Mataga, N., Yao, H., Okada, T., Rettig, W., J. Phys. Chem. 93, 33833386, (1989).(b)Rettig, W., Paeplow, B., Herbst, H., Müllen, K., Desvergne, J. -P., Bouas-Laurent, H., New J. Chem. 23, 453 – 460, (1999).CrossRefGoogle Scholar